\[\frac{1}{8} = \frac{1}{4} \]

\[\frac{2}{8} = \frac{1}{4} \]

\[\frac{6}{8} = \frac{3}{4} \]

\[1 - \frac{1}{4} = \frac{3}{4} \]

Hake
Saxon
Saxon Publishers gratefully acknowledges the contributions of the following individuals in the completion of this project:

Authors: Stephen Hake, John Saxon
Consultants: Diane Blank, Shirley McQuade Davis
Editorial: Chris Braun, Brian E. Rice, Mary Burleson, Matt Maloney, Sherri Little, Rodney Clint Keele, Bo Björn Johnson, Brian Smith, Brooke Butner, Dana Nixon, Andrew Kershen, Sean G. Douglas
Editorial Support Services: Christopher Davey, Jay Allman, Susan Toth, Jean Van Vleck, Shelley Turner, Darlene C. Terry
Production: Adriana Maxwell, Karen Hammond, Brenda Lopez, Debra Sullivan, Diane Readnour, Donna Jarrel, Ryan LaCroix, Alicia Britt, Nancy Rimassa, Cristi D. Whiddon
Project Management: Angela Johnson, Becky Cavnar

© 2004 Saxon Publishers, Inc., and Stephen Hake

All rights reserved. No part of *Saxon Math 5/4, Third Edition, Student Edition* may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Address inquiries to Editorial Support Services, Saxon Publishers, Inc., 2600 John Saxon Blvd., Norman, OK 73071.

Printed in the United States of America

Manufacturing Code: 03S0704
<table>
<thead>
<tr>
<th>LESSON</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Triangles, Rectangles, Squares, and Circles</td>
<td>87</td>
</tr>
<tr>
<td>22</td>
<td>Naming Fractions • Adding Dollars and Cents</td>
<td>92</td>
</tr>
<tr>
<td>23</td>
<td>Lines, Segments, Rays, and Angles</td>
<td>96</td>
</tr>
<tr>
<td>24</td>
<td>More About Missing Numbers in Addition and Subtraction</td>
<td>102</td>
</tr>
<tr>
<td>25</td>
<td>Subtraction Stories</td>
<td>106</td>
</tr>
<tr>
<td>26</td>
<td>Drawing Pictures of Fractions</td>
<td>111</td>
</tr>
<tr>
<td>27</td>
<td>Multiplication as Repeated Addition • Elapsed Time</td>
<td>115</td>
</tr>
<tr>
<td>28</td>
<td>Multiplication Table</td>
<td>119</td>
</tr>
<tr>
<td>29</td>
<td>Multiplication Facts (0’s, 1’s, 2’s, 5’s)</td>
<td>124</td>
</tr>
<tr>
<td>30</td>
<td>Subtracting Three-Digit Numbers with Regrouping</td>
<td>127</td>
</tr>
<tr>
<td>31</td>
<td>Word Problems About Comparing</td>
<td>136</td>
</tr>
<tr>
<td>32</td>
<td>Multiplication Facts (9’s)</td>
<td>141</td>
</tr>
<tr>
<td>33</td>
<td>Writing Numbers Through Hundred Millions, Part 1</td>
<td>145</td>
</tr>
<tr>
<td>34</td>
<td>Writing Numbers Through Hundred Millions, Part 2</td>
<td>151</td>
</tr>
<tr>
<td>35</td>
<td>Naming Mixed Numbers • Two Forms of Money</td>
<td>156</td>
</tr>
<tr>
<td>36</td>
<td>Fractions of a Dollar</td>
<td>161</td>
</tr>
<tr>
<td>37</td>
<td>Reading Fractions and Mixed Numbers from a Number Line</td>
<td>165</td>
</tr>
<tr>
<td>38</td>
<td>Multiplication Facts (Memory Group)</td>
<td>169</td>
</tr>
<tr>
<td>39</td>
<td>Reading an Inch Scale to the Nearest Fourth</td>
<td>172</td>
</tr>
<tr>
<td>40</td>
<td>Capacity</td>
<td>176</td>
</tr>
<tr>
<td>41</td>
<td>Subtracting Across Zero • Missing Factors</td>
<td>189</td>
</tr>
<tr>
<td>42</td>
<td>Multiplying Multiples of 10 and 100 • Rounding Numbers to the Nearest Hundred</td>
<td>194</td>
</tr>
<tr>
<td>43</td>
<td>Adding and Subtracting Decimal Numbers, Part 1</td>
<td>199</td>
</tr>
<tr>
<td>44</td>
<td>Multiplying Two-Digit Numbers, Part 1</td>
<td>203</td>
</tr>
</tbody>
</table>
LESSON 45 Parentheses • Associative Property • Naming Lines and Segments 206

LESSON 46 Division 212

LESSON 47 Other Ways to Show Division 216

LESSON 48 Multiplying Two-Digit Numbers, Part 2 220

LESSON 49 Stories About Equal Groups, Part 1 224

LESSON 50 Adding and Subtracting Decimal Numbers, Part 2 228

INVESTIGATION 5 Percents 232

LESSON 51 Adding Numbers with More Than Three Digits • Checking One-Digit Division 236

LESSON 52 Subtracting Numbers with More Than Three Digits • Stories About Equal Groups, Part 2 240

LESSON 53 One-Digit Division with a Remainder 245

LESSON 54 The Calendar • Rounding Numbers to the Nearest Thousand 250

LESSON 55 Multiples • Factors 255

LESSON 56 Using Pictures to Compare Fractions 260

LESSON 57 Rate Word Problems 264

LESSON 58 Multiplying Three-Digit Numbers 268

LESSON 59 Estimating Arithmetic Answers 272

LESSON 60 Rate Problems with a Given Total 276

INVESTIGATION 6 Displaying Data Using Graphs 280

LESSON 61 Remaining Fraction • Two-Step Equations 286

LESSON 62 Multiplying Three or More Factors • Exponents 290

LESSON 63 Polygons 294

LESSON 64 Division with Two-Digit Answers, Part 1 298

LESSON 65 Divisor, Dividend, and Quotient • Division with Two-Digit Answers, Part 2 303

LESSON 66 Similar and Congruent Figures 309

LESSON 67 Multiplying by Multiples of 10 313

LESSON 68 Division with Two-Digit Answers and a Remainder 318
<table>
<thead>
<tr>
<th>Lesson</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>Millimeters</td>
<td>322</td>
</tr>
<tr>
<td>70</td>
<td>Stories About a Fraction of a Group</td>
<td>327</td>
</tr>
<tr>
<td>7</td>
<td>Collecting Data with Surveys</td>
<td>331</td>
</tr>
<tr>
<td>71</td>
<td>Division Answers Ending with Zero</td>
<td>334</td>
</tr>
<tr>
<td>72</td>
<td>Finding Information to Solve Problems</td>
<td>338</td>
</tr>
<tr>
<td>73</td>
<td>Geometric Transformations</td>
<td>342</td>
</tr>
<tr>
<td>74</td>
<td>Fraction of a Set</td>
<td>347</td>
</tr>
<tr>
<td>75</td>
<td>Measuring Turns</td>
<td>351</td>
</tr>
<tr>
<td>76</td>
<td>Division with Three-Digit Answers • Dividing Money</td>
<td>355</td>
</tr>
<tr>
<td>77</td>
<td>U.S. Customary Units of Weight • Metric Units of Mass</td>
<td>359</td>
</tr>
<tr>
<td>78</td>
<td>Classifying Triangles</td>
<td>363</td>
</tr>
<tr>
<td>79</td>
<td>Symmetry</td>
<td>367</td>
</tr>
<tr>
<td>80</td>
<td>Division with Zeros in Three-Digit Answers</td>
<td>372</td>
</tr>
<tr>
<td>7</td>
<td>Graphing Relationships</td>
<td>376</td>
</tr>
<tr>
<td>81</td>
<td>Angle Measures</td>
<td>379</td>
</tr>
<tr>
<td>82</td>
<td>Tessellations</td>
<td>384</td>
</tr>
<tr>
<td>83</td>
<td>Sales Tax • Change Back</td>
<td>388</td>
</tr>
<tr>
<td>84</td>
<td>Decimal Numbers to Thousandths</td>
<td>392</td>
</tr>
<tr>
<td>85</td>
<td>Multiplying by 10, by 100, and by 1000</td>
<td>396</td>
</tr>
<tr>
<td>86</td>
<td>Multiplying Round Numbers Mentally</td>
<td>400</td>
</tr>
<tr>
<td>87</td>
<td>Multiplying Two Two-Digit Numbers, Part 1</td>
<td>404</td>
</tr>
<tr>
<td>88</td>
<td>Remainders in Stories About Equal Groups</td>
<td>408</td>
</tr>
<tr>
<td>89</td>
<td>Mixed Numbers and Improper Fractions</td>
<td>412</td>
</tr>
<tr>
<td>90</td>
<td>Multiplying Two Two-Digit Numbers, Part 2</td>
<td>415</td>
</tr>
<tr>
<td>9</td>
<td>Investigating Fractions with Manipulatives</td>
<td>419</td>
</tr>
<tr>
<td>91</td>
<td>Decimal Place Value</td>
<td>424</td>
</tr>
<tr>
<td>92</td>
<td>Classifying Quadrilaterals</td>
<td>429</td>
</tr>
<tr>
<td>93</td>
<td>Estimating Multiplication and Division Answers</td>
<td>433</td>
</tr>
</tbody>
</table>
LESSON 94 Two-Step Word Problems 437
LESSON 95 Two-Step Problems About a Fraction of a Group 441
LESSON 96 Average 445
LESSON 97 Mean • Median • Range • Mode 449
LESSON 98 Geometric Solids 453
LESSON 99 Decimal Numbers and Money 458
LESSON 100 Constructing Geometric Models 462
INVESTIGATION 10 Probability 466
LESSON 101 Tables • Schedules 470
LESSON 102 Decimal Number Line: Tenths and Hundredths 474
LESSON 103 Fractions Equal to 1 • Fractions Equal to $\frac{1}{2}$ 479
LESSON 104 Changing Improper Fractions to Whole or Mixed Numbers 484
LESSON 105 Dividing by 10 488
LESSON 106 Evaluating Expressions 492
LESSON 107 Adding and Subtracting Fractions with Common Denominators 495
LESSON 108 Formulas • Distributive Property 499
LESSON 109 Equivalent Fractions 504
LESSON 110 Dividing by Multiples of 10 509
INVESTIGATION 11 Volume 513
LESSON 111 Estimating Area 517
LESSON 112 Reducing Fractions 521
LESSON 113 Multiplying a Three-Digit Number by a Two-Digit Number 525
LESSON 114 Simplifying Fraction Answers 529
LESSON 115 Renaming Fractions 533
LESSON 116 Common Denominators 537
LESSON 117 Rounding Whole Numbers Through Hundred Millions 541
LESSON 118 Dividing by Two-Digit Numbers 545
LESSON 119 Adding and Subtracting Fractions with Different Denominators 549

LESSON 120 Adding and Subtracting Mixed Numbers with Different Denominators 552

INVESTIGATION 12 Solving Equations 556

TOPIC A Using Money Manipulatives to Represent Decimal Place Value 561

TOPIC B Roman Numerals Through 39 563

TOPIC C Roman Numerals Through Thousands 565

TOPIC D Base 5 566

Supplemental Practice Problems for Selected Lessons 569

Glossary 585

Index 611
Dear Student,

We study mathematics because of its importance to our lives. Our school schedule, our trip to the store, the preparation of our meals, and many of the games we play involve mathematics. You will find that the word problems in this book are often drawn from everyday experiences.

As you grow into adulthood, mathematics will become even more important. In fact, your future in the adult world may depend on the mathematics you have learned. This book was written to help you learn mathematics and to learn it well. For this to happen, you must use the book properly. As you work through the pages, you will see that similar problems are presented over and over again. **Solving each problem day after day is the secret to success.**

Your book is made up of daily lessons and investigations. Each lesson has four parts. The first part is a Warm-Up that includes practice of basic facts and mental math. These exercises improve your speed, accuracy, and ability to do math “in your head.” The Warm-Up also includes a problem-solving exercise to familiarize you with strategies for solving complicated problems. The second part of the lesson is the New Concept. This section introduces a new mathematical concept and presents examples that use the concept. In the next section, the Lesson Practice, you have a chance to solve problems involving the new concept. The problems are lettered a, b, c, and so on. The final part of the lesson is the Mixed Practice. This problem set reviews previously taught concepts and prepares you for concepts that will be taught in later lessons. Solving these problems helps you remember skills and concepts for a long time.

Investigations are variations of the daily lesson. The investigations in this book often involve activities that fill an entire class period. Investigations contain their own set of questions instead of a problem set.

Remember, solve every problem in every practice set, every problem set, and every investigation. Do not skip problems. With honest effort, you will experience success and true learning that will stay with you and serve you well in the future.

Stephen Hake
Temple City, California
ACKNOWLEDGMENTS

I wish to acknowledge the following contributors to the revision of Saxon Math 5/4–8/7:

Barbara Place, who conceived the project.

Dr. Gerald Beer, who provided lesson content and problems on topics of pattern recognition, functions, scale drawings and models, probability, data analysis, and problem solving.

Shirley McQuade Davis, for her ideas on teaching story-problem thinking patterns.

Brian Rice, for his conceptual work on story-problem lessons and for his editorial work on the Assessments and Classroom Masters.

Dan Shippey, who designed the Mercury Freedom 7 scale model for Saxon Math 7/6, Investigation 11.

Mary Burleson, who scheduled the project and coordinated efforts among the many participants.

Adriana Maxwell, who coordinated the production of the manuscripts.

Diane Blank, for her extensive and thorough analysis of state standards and numerous helpful suggestions for addressing those standards.

Nancy Crisler, for her contributions to the Teacher’s Manuals.

Nancy Larson, for her generous help and insightful suggestions for the Teacher's Manuals.

Chris Braun, whose invaluable contributions as senior editor span the contents of the series.

John Saxon, whose unwavering focus on student success continues to inspire and guide.

Mary Hake, for her support, encouragement, and patience.

Stephen Hake
Temple City, California
LESSON

1

Review of Addition • Addition Stories • Missing Addends, Part 1

WARM-UP

Facts Practice: 100 Addition Facts (Test A)†

Mental Math:
Add ten to a number:

a. \(20 + 10\)
b. \(34 + 10\)
c. \(10 + 53\)

d. \(5 + 10\)
e. \(25 + 10\)
f. \(10 + 8\)

Patterns:
As a class, count by twos from 2 through 40 while the teacher or a student lists the numbers in a column on the board. Study the list. Which digits appear as final digits? Which digits do not appear as final digits?

NEW CONCEPTS

Review of addition

Addition is the combining of two groups into one group. For example, when we count the dots on the top faces of a pair of dot cubes (dice), we are adding.

\[
\begin{array}{c}
\begin{array}{c}
\bullet \\
\bullet
\end{array}
&+&
\begin{array}{c}
\bullet \\
\bullet
\end{array}
\end{array}
=
\begin{array}{c}
\bullet \\
\bullet \\
\bullet
\end{array}
\]

\(4 + 3 = 7\)

The numbers that are added are called **addends**. The answer is called the **sum**. The expression \(4 + 3 = 7\) is a **number sentence**. A number sentence is a complete sentence that uses numbers and symbols instead of words. Here we show two ways to add 4 and 3:

\[
\begin{array}{c}
\begin{array}{c}
4 \\
+ 3
\end{array}
&=&
\begin{array}{c}
3 \\
+ 4
\end{array}
\]

d. \(+ 3\)
e. \(+ 4\)
f. \(+ 10\)

†For instructions on how to use the Warm-up activities, please consult the preface.
Notice that if the order of the addends is changed, the sum remains the same. This property of addition is true for any two numbers and is called the **commutative property of addition**. When we add two numbers, either number may be first.

\[
4 + 3 = 7 \quad 3 + 4 = 7
\]

When we add zero to a number, the number is not changed. This property of addition is called the **identity property of addition**. If we start with a number and add zero, the sum is identical to the starting number.

\[
4 + 0 = 4 \quad 9 + 0 = 9 \quad 0 + 7 = 7
\]

Example 1 Write a number sentence for this picture:

Solution A number sentence for the picture is \(4 + 5 = 9\). The number sentence \(5 + 4 = 9\) is also correct.

When adding three numbers, the numbers may be added in any order. Here we show six ways to add 4, 3, and 5. Each way the answer is 12.

\[
\begin{array}{ccccccc}
4 & 4 & 3 & 3 & 5 & 5 \\
3 & 5 & 4 & 5 & 4 & 3 \\
+ 5 & + 3 & + 5 & + 4 & + 3 & + 4 \\
\hline
12 & 12 & 12 & 12 & 12 & 12 \\
\end{array}
\]

Example 2 Show six ways to add 1, 2, and 3.

Solution We can form two number sentences that begin with the addend 1.

\[1 + 2 + 3 = 6 \quad 1 + 3 + 2 = 6\]

We can form two number sentences that begin with the addend 2.

\[2 + 1 + 3 = 6 \quad 2 + 3 + 1 = 6\]

We can form two number sentences that begin with the addend 3.

\[3 + 1 + 2 = 6 \quad 3 + 2 + 1 = 6\]

Addition stories Many word problems tell a story. Some stories are about putting things together. Look at this story:

John had 5 marbles. He bought 7 more marbles. Now John has 12 marbles.
There is a pattern to this story. John had some marbles. Then he bought some more marbles. When he put the marbles together, he found the total number of marbles. “Some and some more” stories like this have an addition pattern.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some</td>
<td>5 marbles</td>
</tr>
<tr>
<td>+ Some more</td>
<td>+ 7 marbles</td>
</tr>
<tr>
<td>Total</td>
<td>12 marbles</td>
</tr>
</tbody>
</table>

Here we show the pattern written sideways.

Pattern: Some + some more = total

Problem: 5 marbles + 7 marbles = 12 marbles

Here we show a diagram for the story:

Example 3 Miguel saw 8 ducks. Then he saw 7 more ducks. How many ducks did Miguel see in all?

Solution This problem follows the idea of “some and some more.” We show the addition pattern below.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some</td>
<td>8 ducks</td>
</tr>
<tr>
<td>+ Some more</td>
<td>+ 7 ducks</td>
</tr>
<tr>
<td>Total</td>
<td>15 ducks</td>
</tr>
</tbody>
</table>

We find the total number by adding 8 and 7. Miguel saw 15 ducks in all.

Example 4 Samantha saw rabbits in the field. She saw 5 rabbits in the east field. She saw 3 rabbits in the west field. She saw 4 rabbits in the north field. How many rabbits did Samantha see in all?

Solution In this story there are three addends.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some</td>
<td>5 rabbits</td>
</tr>
<tr>
<td>Some more</td>
<td>3 rabbits</td>
</tr>
<tr>
<td>+ Some more</td>
<td>+ 4 rabbits</td>
</tr>
<tr>
<td>Total</td>
<td>12 rabbits</td>
</tr>
</tbody>
</table>

Samantha saw 12 rabbits in all.
Some of the problems in this book will have an addend missing. When one addend is missing and the sum is given, the problem is to find the missing addend. Can you figure out the missing addend in this number sentence?

\[\begin{array}{c}
2 \\
+ \\
\text{?} \\
\hline
7
\end{array} \]

Since we know that \(2 + 5 = 7\), the missing addend is 5. We will often use a letter to represent a missing number, as we see in the example below.

Example 5 Find each missing addend:
(a) \(4 + N = 7\)
(b) \(B + 6 = 10\)

Solution (a) The letter \(N\) stands for a missing addend. Since \(4 + 3 = 7\), the letter \(N\) stands for the number 3 in this number sentence.

(b) In this problem the letter \(B\) is used to stand for the missing addend. Since \(4 + 6 = 10\), the letter \(B\) stands for the number 4.

LESSON PRACTICE

Practice set Add:

a. \(5 + 6\)
b. \(6 + 5\)
c. \(8 + 0\)

d. \(4 + 8 + 6\)
e. \(4 + 5 + 6\)

f. Diane ran 5 laps in the morning. She ran 8 laps in the afternoon. How many laps did she run in all?

g. Write two number sentences for this picture to show the commutative property:

h. Show six ways to add 1, 3, and 5.

Find each missing addend:

i. \(7 + N = 10\)
j. \(A + 8 = 12\)
MIXED PRACTICE

Problem set

1. There were 5 students in the first row and 7 students in the second row. How many students were in the first two rows?

2. Ling had 6 coins in her left pocket and 3 coins in her right pocket. How many coins did Ling have in both pockets?

Find each sum or missing addend:

3. \(9 + 4 \)
4. \(8 + 2 \)

5. \(\begin{array}{c}
4 \\
+ \ N
\end{array} \)
\(\begin{array}{c}
9
\end{array} \)

6. \(\begin{array}{c}
w \\
+ \ 5
\end{array} \)
\(\begin{array}{c}
8
\end{array} \)

7. \(\begin{array}{c}
6 \\
+ \ p
\end{array} \)
\(\begin{array}{c}
8
\end{array} \)

8. \(\begin{array}{c}
q \\
+ \ 8
\end{array} \)
\(\begin{array}{c}
8
\end{array} \)

9. \(3 + 4 + 5 \)

10. \(4 + 4 + 4 \)

11. \(6 + R = 10 \)

12. \(X + 5 = 6 \)

13. \(5 \)

14. \(8 \)

15. \(6 \)

16. \(9 \)

17. \(M \)

18. \(9 \)

19. \(Z \)

20. \(0 \)

21. \(3 + 2 + 5 + 4 + 6 \)

22. \(2 + 2 + 2 + 2 + 2 + 2 + 2 \)

Write a number sentence for each picture:

23. \(\begin{array}{c}
\ \ \ \ \ \ \ \ \ \ \\
\ \ \ \ \ \ \ \ \ \\
\end{array} \)

24. \(\begin{array}{c}
\end{array} \)

25. Show six ways to add 2, 3, and 4.

26. Sometimes a missing number is shown by a shape instead of a letter. Choose the correct number for \(\Delta \) in the following number sentence:

\[\Delta + 3 = 10 \]

A. 3 B. 7 C. 10 D. 13
LESSON

2

Missing Addends, Part 2

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Add ten to a number:

- a. 40 + 10
- d. 7 + 10
- b. 26 + 10
- e. 10 + 9
- c. 39 + 10
- f. 10 + 63

Patterns:
As a class, count by fives from 5 to 100 while the teacher or a student lists the numbers in a column on the board. Which digits appear as final digits? Which numbers in the list are numbers we say when we count by twos from 2 to 100?

NEW CONCEPT

Derek rolled a dot cube three times. The picture below shows the top face of the cube for the first two rolls.

The total number of dots on all three rolls was 12. Can you draw a picture of Derek’s third roll?

We will write a number sentence for this problem. The first two numbers are 5 and 3. We do not know the number of the third roll, so we will use a letter. We know that the total is 12.

\[5 + 3 + T = 12 \]

To find the missing addend, we first add 5 and 3, which makes 8. Then we think, “Eight plus what number equals twelve?” Since 8 plus 4 equals 12, the third roll was 4.
Example Find each missing addend:

(a) 6

\[
\begin{array}{c}
N \\
+ 5 \\
\hline
17
\end{array}
\]

Solution (a) We add 6 and 5, which makes 11. We think, “Eleven plus what number equals seventeen?” Since 11 plus 6 equals 17, the missing addend is 6.

(b) First we add 4, 3, 2, and 6, which equals 15. Since 15 plus 5 is 20, the missing addend is 5.

LESSON PRACTICE

Practice set Find each missing addend:

a. 8 + A + 2 = 17

b. B + 6 + 5 = 12

c. 4 + C + 2 + 3 + 5 = 20

MIXED PRACTICE

Problem set †1. Hoppy ate 5 carrots in the morning and 6 carrots in the afternoon. How many carrots did Hoppy eat in all?

2. Five friends rode their bikes from the school to the lake. They rode 7 miles, then rested. They still had 4 miles to go. How many miles was it from the school to the lake?

Find each sum or missing addend:

3. 9 + N = 13

4. 7 + 8

5. \[
P + 6 \\
\hline
13
\]

6. \[
5 + W \\
\hline
12
\]

7. \[
4 + 5 \\
\hline + 7
\]

8. \[
9 + 3 \\
\hline
\]

†The italicized numbers within parentheses underneath each problem number are called lesson reference numbers. These numbers refer to the lesson(s) in which the major concept of that particular problem is introduced. If additional assistance is needed, refer to the discussion, examples, or practice problems of that lesson.
9. \(8\)

10. \(9\)

11. \(2\)

12. \(3\)

\[\begin{align*}
B & \quad 7 \\
+ 3 & \quad + 6 \\
16 & \quad + 2
\end{align*} \]

13. \(9\)

14. \(2\)

15. \(5\)

16. \(2\)

\[\begin{align*}
(1) & \quad 5 \\
(2) & \quad M \\
+ 3 & \quad + 4 \\
9 & \quad + Q \\
9 & \quad + R \\
7 & \quad & \quad
\end{align*} \]

17. \(5\)

18. \(8\)

19. \(2\)

20. \(5\)

\[\begin{align*}
(2) & \quad 3 \\
(1) & \quad 4 \\
+ T & \quad + 6 \\
10 & \quad + 7 \\
11 & \quad + 6
\end{align*} \]

21. \(5 + 5 + 6 + 4 + X = 23\)

22. Show six ways to add 4, 5, and 6.

Write a number sentence for each picture:

23. \(\)

24. \(\)

25. \(\)

26. Which number is \(\square\) in the following number sentence?

\(6 + \square = 10\)

A. 4 B. 6 C. 10 D. 16
Lesson 3
Sequences • Digits

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Add ten, twenty, or thirty to a number:
- a. 20 + 20
- b. 23 + 20
- c. 43 + 10
- d. 24 + 30
- e. 50 + 30
- f. 10 + 65

- g. One less than 24 is 23. What number is one less than 36? ... one less than 43? ... one less than 65?

Vocabulary:
Copy these two patterns on a piece of paper. In each of the six boxes, write either “addend” or “sum.”

\[
\begin{array}{c}
\square + \square = \square + \square \\
\end{array}
\]

NEW CONCEPTS

Sequences
Counting is a math skill we learn early in life. Counting by ones, we say “one, two, three, four, five,”

1, 2, 3, 4, 5, ...

These numbers are called **counting numbers**. The counting numbers continue without end. We may also count by numbers other than one.

- Counting by twos: 2, 4, 6, 8, 10, ...
- Counting by fives: 5, 10, 15, 20, 25, ...

These are examples of counting patterns. A counting pattern is a **sequence**. The three dots mean that the sequence continues without end. A counting sequence may count up or count down. We can study a counting sequence to discover a rule for the sequence. Then we can find more numbers in the sequence.
Example 1 Find the rule and the next three numbers of this counting sequence:

10, 20, 30, 40, _____, _____, _____, ...

Solution The rule is count up by tens. Counting this way, we find that the next three numbers are 50, 60, and 70.

Example 2 Find the rule of this counting sequence. Then find the missing number in the sequence.

30, 27, 24, 21, _____, 15, ...

Solution The rule is count down by threes. If we count down three from 21, we find that the missing number in the sequence is 18. We see that 15 is three less than 18, which follows the rule.

Digits To write numbers, we use digits. Digits are the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The number 356 has three digits, and the last digit is 6. The number 67,896,094 has eight digits, and the last digit is 4.

Example 3 The number 64,000 has how many digits?

Solution The number 64,000 has five digits.

Example 4 What is the last digit of 2001?

Solution The last digit of 2001 is 1.

LESSON PRACTICE

Practice set Write the rule and the next three numbers of each counting sequence:

a. 10, 9, 8, 7, _____, _____, _____, ...

b. 3, 6, 9, 12, _____, _____, _____, ...

Find the missing number in each counting sequence:

c. 80, 70, _____, 50, ...

d. 8, _____, 16, 20, 24, ...

How many digits are in each number?

e. 18

f. 5280

g. 8,403,227,189

What is the last digit of each number?

h. 19

i. 5281

j. 8,403,190
MIXED PRACTICE

Problem set

1. Blanca has 5 dollars, Susan has 6 dollars, and Britt has 7 dollars. Altogether, how much money do the three girls have?

2. On William’s favorite CD there are 9 songs. On his next-favorite CD there are 8 songs. Altogether, how many songs are on William’s two favorite CDs?

3. How many digits are in each number?
 (a) 593 (b) 180 (c) 186,527,394

4. What is the last digit of each number?
 (a) 3427 (b) 460 (c) 437,269

Find each missing addend:

5. $5 + M + 4 = 12$
 6. $8 + 2 + W = 16$

Write the next number in each counting sequence:

7. 10, 20, 30, ____, ...
 8. 22, 21, 20, ____, ...

9. 40, 35, 30, 25, ____, ...
 10. 70, 80, 90, ____, ...

Write the rule and the next three numbers of each counting sequence:

11. 6, 12, 18, ____, ____, ____, ...

12. 3, 6, 9, ____, ____, ____, ...

13. 4, 8, 12, ____, ____, ____, ...

14. 45, 36, 27, ____, ____, ____, ...

Find the missing number in each counting sequence:

15. 8, 12, ____, 20, ...
 16. 12, 18, ____, 30, ...

17. 30, 25, ____, 15, ...
 18. 6, 9, ____, 15, ...
19. How many small rectangles are shown? Count by twos.

20. How many X’s are shown? Count by fours.

21. Write a number sentence for the picture below.

22. 23. 24. 25.

26. If Δ = 3 and □ = 4, then Δ + □ equals which of the following?
 A. 3 B. 4 C. 5 D. 7
LESSON 4

Place Value

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Add ten, twenty, or thirty to a number:

- a. 66 + 10
- b. 29 + 20
- c. 10 + 76
- d. 38 + 30
- e. 20 + 6
- f. 40 + 30
- g. What number is one less than 76? ... than 49? ... than 68?

Problem Solving:
Tom has a total of nine coins in his left and right pockets. Copy and complete this table listing the possible number of coins in each pocket. Your table should have ten rows of numbers.

<table>
<thead>
<tr>
<th>Number of Coins</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW CONCEPT

To help us with the idea of **place value**, we will use pictures to show different amounts of money. We will use $100 bills, $10 bills, and $1 bills.

Example 1 How much money is shown in the picture below?

Solution Since there are 2 hundreds, 4 tens, and 3 ones, the amount of money shown is **$243**.

Example 2 Use money manipulatives or draw a diagram to show how to make $324 with $100 bills, $10 bills, and $1 bills.
Solution To show $324, we use 3 hundreds, 2 tens, and 4 ones.

The value of each place is determined by its position. Three-digit numbers like 324 occupy three different places.

Example 3 Use money manipulatives or draw a diagram to show both $203 and $230. Which is the greater amount of money, $203 or $230?

Solution Using bills, we show $203 and $230 like this:

The amount $230 is greater than $203.

Example 4 The digit 7 is in what place in 753?

Solution The 7 is in the third place from the right, which shows the number of hundreds. So the 7 is in the hundreds place.

LESSON PRACTICE

Practice set a. Use money manipulatives or draw a diagram to show $231 in $100 bills, $10 bills, and $1 bills.

b. Use money manipulatives or draw a diagram to show $213. Which is less, $231 or $213?

c. The digit 6 is in what place in each of these numbers?
 (a) 16 (b) 65 (c) 623

d. Use three digits to write a number equal to 5 hundreds, 2 tens, and 3 ones.
MIXED PRACTICE

Problem set

1. When Robert looked at the cards in his hand, he saw 3 clubs, 4 diamonds, 5 spades, and 1 heart. How many cards did he have in all?

2. Write a number sentence for this picture:

3. How many cents are in 4 nickels? Count by fives.

Find each sum or missing addend:

4. \[4 + N \]
5. \[4 + 5 \]
6. \[13 + Y \]
7. \[7 + S \]

8. \[4 + N + 5 = 12 \]
9. \[N + 2 + 3 = 8 \]

Write the rule and the next three numbers of each counting sequence:

10. \(9, 12, 15, \ldots, \ldots, \ldots, \ldots\)
11. \(30, 24, 18, \ldots, \ldots, \ldots, \ldots\)
12. \(12, 16, 20, \ldots, \ldots, \ldots, \ldots\)
13. \(35, 28, 21, \ldots, \ldots, \ldots, \ldots\)

14. How many digits are in each number?
 (a) 37,432
 (b) 5,934,286
 (c) 453,000

15. What is the last digit of each number?
 (a) 734
 (b) 347
 (c) 473

16. Draw a diagram to show $342 in $100 bills, $10 bills, and $1 bills.

17. How much money is shown by this picture?
Find the missing number in each counting sequence:

18. 24, _____, 36, 42, ...
19. 36, 32, _____, 24, ...

20. How many ears are on 10 rabbits? Count by twos.

21. The digit 6 is in what place in 365?

22. Write a number sentence for this picture:

Find each missing addend:

23. 2 + 5 + 3 + 2 + 3 + 1 + N = 20
24. 4 + B + 3 + 2 + 5 + 4 + 1 = 25

25. Show six ways to add 6, 7, and 8.

26. In the number 123, which digit shows the number of hundreds?
 A. 1 B. 2 C. 3 D. 4
Ordinal Numbers • Months of the Year

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Add a number ending in zero to another number:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>24</td>
<td>+ 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>36</td>
<td>+ 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>50</td>
<td>+ 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>33</td>
<td>+ 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>40</td>
<td>+ 50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

f. What number is one less than 28? ... 87? ... 54?

Patterns:
Copy this design of ten circles on a piece of paper. In each circle, write a counting number from 1 to 10 that continues the pattern of “1, skip, skip, 2, skip, skip, 3,”

NEW CONCEPTS

Ordinal numbers
If we want to count the number of children in a line, we say, “one, two, three, four,” These numbers tell us how many children we have counted. To describe a child’s position in a line, we use words like first, second, third, and fourth. Numbers that tell position or order are called ordinal numbers.

Example 1
There are ten children in the lunch line. Pedro is fourth in line. (a) How many children are in front of Pedro? (b) How many children are behind him?

Solution
A diagram may help us understand the problem. We draw and label a diagram using the information given to us.

(a) Since Pedro is fourth in line, we see that there are three children in front of him.
(b) The rest of the children are behind Pedro. From the diagram, we see that there are six children behind him.
Many times ordinal numbers are abbreviated. The abbreviation consists of a counting number and the letters *st, nd, rd, or th*. Here we show some abbreviations.

<table>
<thead>
<tr>
<th>first</th>
<th>1st</th>
<th>sixth</th>
<th>6th</th>
<th>eleventh</th>
<th>11th</th>
</tr>
</thead>
<tbody>
<tr>
<td>second</td>
<td>2nd</td>
<td>seventh</td>
<td>7th</td>
<td>twelfth</td>
<td>12th</td>
</tr>
<tr>
<td>third</td>
<td>3rd</td>
<td>eighth</td>
<td>8th</td>
<td>thirteenth</td>
<td>13th</td>
</tr>
<tr>
<td>fourth</td>
<td>4th</td>
<td>ninth</td>
<td>9th</td>
<td>twentieth</td>
<td>20th</td>
</tr>
<tr>
<td>fifth</td>
<td>5th</td>
<td>tenth</td>
<td>10th</td>
<td>twenty-first</td>
<td>21st</td>
</tr>
</tbody>
</table>

Example 2 Andy is 13th in line. Kobe is 3rd in line. How many students are between Kobe and Andy?

Solution We begin by drawing a diagram.

From the diagram we see that there are **nine students** between Kobe and Andy.

Months of the year We use ordinal numbers to describe the months of the year and the days of each month. This table lists the twelve months of the year in order. A common year is 365 days long. A leap year is 366 days long. The extra day in a leap year is added to February.

<table>
<thead>
<tr>
<th>Month</th>
<th>Order</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>first</td>
<td>31</td>
</tr>
<tr>
<td>February</td>
<td>second</td>
<td>28 or 29</td>
</tr>
<tr>
<td>March</td>
<td>third</td>
<td>31</td>
</tr>
<tr>
<td>April</td>
<td>fourth</td>
<td>30</td>
</tr>
<tr>
<td>May</td>
<td>fifth</td>
<td>31</td>
</tr>
<tr>
<td>June</td>
<td>sixth</td>
<td>30</td>
</tr>
<tr>
<td>July</td>
<td>seventh</td>
<td>31</td>
</tr>
<tr>
<td>August</td>
<td>eighth</td>
<td>31</td>
</tr>
<tr>
<td>September</td>
<td>ninth</td>
<td>30</td>
</tr>
<tr>
<td>October</td>
<td>tenth</td>
<td>31</td>
</tr>
<tr>
<td>November</td>
<td>eleventh</td>
<td>30</td>
</tr>
<tr>
<td>December</td>
<td>twelfth</td>
<td>31</td>
</tr>
</tbody>
</table>
When writing dates, we can use numbers to represent the month, day, and year. For example, if Robert was born on the second day of June in 1988, then he could write his birth date this way:

6/2/1988

The form for this date is “month/day/year.” The 6 stands for the sixth month, which is June, and the 2 stands for the second day of the month.

Example 3 Jenny wrote her birth date as 7/8/89. (a) In what month was Jenny born? (b) In what year was she born?

Solution (a) In the United States we usually write the number of the month first. The first number Jenny wrote was 7. She was born in the seventh month, which is July.

(b) When confusion is unlikely, we often abbreviate years by using only the last two digits of the year. So we assume that Jenny was born in 1989.

Example 4 Mr. Chitsey’s driver’s license expired on 4/29/03. Write that date using the name of the month and all four digits of the year.

Solution The fourth month is April. The year 03 represents 2003. So Mr. Chitsey’s license expired on April 29, 2003.

LESSON PRACTICE

Practice set a. Kiyoko was third in line, and Kayla was eighth in line. How many people were between them?

b. Write your birth date in month/day/year form.

c. In month/day/year form, write the date that Independence Day will next be celebrated.

MIXED PRACTICE

Problem set 1. At the grocery store there were 5 people in the first line, 6 people in the second line, and 4 people in the third line. Altogether, how many people were in the three lines?

Find each missing addend:

\[
\begin{align*}
2 &= \underline{6} + \underline{X} & 3 &= \underline{Y} + 7 & 4 &= \underline{Z} + 5 & 5 &= \underline{N} + 6 \\
15 &= 14 & 12 &= 13
\end{align*}
\]
6. \[\begin{array}{c}
2 \\
5 \\
+ W \\
10
\end{array} \]

7. \[\begin{array}{c}
7 \\
+ A \\
7
\end{array} \]

8. \[\begin{array}{c}
R \\
+ 5 \\
11
\end{array} \]

9. \[\begin{array}{c}
3 \\
+ T \\
5
\end{array} \]

10. Todd was born on 8/15/93. Write Todd’s birth date using the name of the month and all four digits of the year.

Write the rule and the next three numbers of each counting sequence:

11. \[12, 15, 18, \text{____, ____}, \text{____, ...} \]

12. \[16, 20, 24, \text{____, ____}, \text{____, ...} \]

13. \[28, 35, 42, \text{____, ____}, \text{____, ...} \]

Find the missing number in each counting sequence:

14. \[30, \text{____}, 42, 48 \]

15. \[30, \text{____}, 40, 45 \]

16. Draw a diagram to show $432 in $100 bills, $10 bills, and $1 bills.

17. Write a number sentence for the picture below.

18. The digit 8 is in what place in 845?

19. Use three digits to write the number that equals 2 hundreds plus 3 tens plus 5 ones.

20. If the pattern is continued, what will be the next circled number?

1, 2, \(\boxed{3}\), 4, 5, \(\boxed{6}\), 7, 8, \(\boxed{9}\), 10, ...

21. Seven boys have how many eyes? Count by twos.

22. \[\begin{array}{c}
5 \hspace{1cm} \text{5} \\
8 \hspace{1cm} \text{7} \\
4 \hspace{1cm} \text{3} \\
7 \hspace{1cm} \text{8} \\
4 \hspace{1cm} \text{4} \\
+ 3 \hspace{1cm} + 2
\end{array} \]

23. \[\begin{array}{c}
5 \\
7 \\
6 \\
5 \\
4 \\
+ 2
\end{array} \]

24. \[\begin{array}{c}
9 \\
7 \\
6 \\
5 \\
4 \\
+ 2
\end{array} \]

25. \[\begin{array}{c}
8 \\
7 \\
3 \\
5 \\
4 \\
+ 9
\end{array} \]

26. Jenny was third in line. Jessica was seventh in line. How many people were between Jenny and Jessica?

A. 3 B. 4 C. 5 D. 6
LESSON 6

Review of Subtraction • Addition and Subtraction Fact Families

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Nine is one less than ten. When adding 9 to a number, we may mentally add 10 and then think of the number that is one less than the sum. For 23 + 9 we may think, “23 + 10 is 33, and one less than 33 is 32.”

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>33</td>
<td>b</td>
<td>33</td>
<td>c</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>+ 10</td>
<td></td>
<td>+ 9</td>
<td></td>
<td>+ 10</td>
</tr>
<tr>
<td>d</td>
<td>46</td>
<td>e</td>
<td>65</td>
<td>f</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>+ 9</td>
<td></td>
<td>+ 10</td>
<td></td>
<td>+ 9</td>
</tr>
</tbody>
</table>

Problem Solving:
Terrell has a total of nine coins in his left and right pockets. He has some coins (at least two) in each pocket. Make a table that lists the possible number of coins in each pocket.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>+ 10</td>
<td>+ 9</td>
<td>+ 10</td>
<td>+ 9</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>+ 10</td>
<td>+ 9</td>
<td>+ 10</td>
<td>+ 9</td>
</tr>
</tbody>
</table>

NEW CONCEPTS

Review of subtraction

Remember that when we add, we combine two groups into one group.

\[\begin{array}{c}
\text{•} \\
\text{•}
\end{array} + \begin{array}{c}
\text{•}
\end{array} = \begin{array}{c}
\text{•} \\
\text{•} \\
\text{•}
\end{array} \]

\[4 + 2 = 6 \]

When we subtract, we separate one group into two groups. To take away two from six, we subtract.

\[\begin{array}{c}
\text{•} \\
\text{•} \\
\text{•}
\end{array} - \begin{array}{c}
\text{•}
\end{array} = \begin{array}{c}
\text{•} \\
\text{•}
\end{array} \]

\[6 - 2 = 4 \]

When we subtract one number from another number, the answer is called the difference. If we subtract two from six, the difference is four.

\[\frac{6}{2} = 4 \text{ difference} \]
Here we write “two subtracted from six” horizontally:

\[6 - 2 = 4 \]

We can check a subtraction answer by adding the difference to the number subtracted. This is like doing the problem “in reverse.” The sum of the addition should equal the starting number.

\[
\begin{array}{c|c|c}
\text{SUBTRACT DOWN} & 6 & \text{ADD UP} \\
\text{Six minus two} & \frac{-2}{-2} & \text{equals four.} \\
\text{equals four.} & \frac{4}{4} & \text{equals six.} \\
\hline
\text{SUBTRACT} & 6 - 2 = 4 \\
\text{Add} & 6 + 2 = 8 \\
\end{array}
\]

The order of numbers matters in subtraction. The expression \(6 - 2\) means “take two from six.” This is not the same as \(2 - 6\), which means “take six from two.”

Addition and subtraction fact families

A fact family is a group of three numbers that can be arranged to form four facts. The three numbers 2, 4, and 6 form an addition and subtraction fact family.

\[
\begin{array}{ccc}
2 & +4 & 6 \\
+2 & +2 & 4 \\
6 & 6 & 2 \\
\end{array}
\]

Recognizing addition and subtraction fact families can help us learn the facts.

Example

The numbers 3, 5, and 8 form an addition and subtraction fact family. Write two addition facts and two subtraction facts using these three numbers.

Solution

\[
\begin{array}{ccc}
3 & +5 & 8 \\
+3 & +3 & 5 \\
8 & 8 & 3 \\
\end{array}
\]

LESSON PRACTICE

Practice set

Subtract. Check your answers by adding.

a. \(14 - 8\)
 b. \(9 - 3\)
 c. \(15 - 7\)
 d. \(11 - 4\)
 e. \(12 - 5\)

f. The numbers 5, 6, and 11 form a fact family. Write two addition facts and two subtraction facts using these three numbers.

g. Describe how to check a subtraction answer. Show an example.
MIXED PRACTICE

Problem set

1. \[14 - 5\]
2. \[15 - 8\]
3. \[9 - 4\]
4. \[11 - 7\]
5. \[12 - 8\]
6. \[11 - 6\]
7. \[15 - 7\]
8. \[9 - 6\]
9. \[13 - 5\]
10. \[12 - 6\]
11. \[8 + N\] = 17
12. \[A + 8\] = 14

13. \[3 + W = 11\]
14. \[1 + 4 + M = 13\]

15. The numbers 4, 6, and 10 form a fact family. Write two addition facts and two subtraction facts using these three numbers.

Write the rule and the next three numbers of each counting sequence:

16. 16, 18, 20, 22, 24, 26, ...
17. 21, 28, 35, 42, 49, 56, ...
18. 20, 24, 28, 32, 36, 40, ...

19. How many days are in the tenth month of the year?

20. Draw a diagram to show $326.$

21. The digit 6 is in what place in 456?

Find each missing addend:

22. \[2 + N + 4 = 13\]
23. \[A + 3 + 5 = 16\]
24. \[1 + 2 + 3 + M + 5 + 6 = 20\]

25. Show six ways to add 3, 4, and 5.

26. The ages of the children in Tom’s family are 7 and 9. The ages of the children in Mary’s family are 3, 5, and 9. Which number sentence shows how many children are in both families?
 A. \[3 + 7 = 10\]
 B. \[7 + 9 = 16\]
 C. \[2 + 3 = 5\]
 D. \[3 + 5 + 9 = 17\]
LESSON 7
Writing Numbers Through 999

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Add one less than ten to a number:

\begin{align*}
\text{a. } 28 + 9 & \quad \text{b. } 44 + 9 & \quad \text{c. } 87 + 9 \\
\text{d. } 63 + 20 & \quad \text{e. } 46 + 50 & \quad \text{f. } 38 + 30
\end{align*}

Review:

Patterns:
The months of the year repeat. Twelve months after January is January of the next year. Twenty-four months after January is January again. (a) What month is twenty-five months after January? (b) On Valentine’s Day, Kadeeja’s sister was 22 months old. In what month was Kadeeja’s sister born?

NEW CONCEPT

Whole numbers are the counting numbers and the number zero.

\[0, 1, 2, 3, 4, 5, \ldots\]

To write the names of whole numbers through 999 (nine hundred ninety-nine), we need to know the following words and how to put them together:

\begin{center}
\begin{tabular}{ccc}
0 & zero & 10 & ten & 20 & twenty \\
1 & one & 11 & eleven & 30 & thirty \\
2 & two & 12 & twelve & 40 & forty \\
3 & three & 13 & thirteen & 50 & fifty \\
4 & four & 14 & fourteen & 60 & sixty \\
5 & five & 15 & fifteen & 70 & seventy \\
6 & six & 16 & sixteen & 80 & eighty \\
7 & seven & 17 & seventeen & 90 & ninety \\
8 & eight & 18 & eighteen & 100 & one hundred \\
9 & nine & 19 & nineteen & & \\
\end{tabular}
\end{center}

You may refer to this chart when you are asked to write the names of numbers in the problem sets.

\textit{Note:} The names of two-digit numbers that are greater than 20 and do not end with the number 0 are written with a hyphen.
Example 1 Use words to write the number 44.

Solution We use a hyphen and write “forty-four.” Notice that “forty” is spelled without a “u.”

To write three-digit numbers, we first write the number of hundreds and then we write the rest of the number. We do not use the word “and” when writing whole numbers.

Example 2 Use words to write the number 313.

Solution First we write the number of hundreds. Then we write the rest of the number to get three hundred thirteen. (We do not write “three hundred and thirteen.”)

Example 3 Use words to write the number 705.

Solution First we write the number of hundreds. Then we write the rest of the number to get seven hundred five.

Example 4 Use digits to write the number six hundred eight.

Solution Six hundred eight means “six hundreds and eight ones.” There are no tens, so we write a zero in the tens place and get 608.

In Lesson 4 we used $100 bills, $10 bills, and $1 bills to demonstrate place value. Here we show another model for place value. Small squares stand for ones. The long, ten-square rectangles stand for tens. The large, hundred-square blocks stand for hundreds.

Example 5 Use words to write the number shown by this model:

Solution Two hundreds, one ten, and eight ones is 218, which we write as two hundred eighteen.
LESSON PRACTICE

Practice set Use words to write each number:

a. 0

b. 81

c. 99

d. 515

e. 444

f. 909

Use digits to write each number:

g. nineteen

h. ninety-one

i. five hundred twenty-four

j. eight hundred sixty

k. Use words to write the number shown by this model:

MIXED PRACTICE

Problem set

1. Annie has 8 dollars. She needs 6 dollars more to buy the radio. How much does the radio cost?

2. Bixby poured 8 ounces of soda into a pitcher containing 8 ounces of juice. How many ounces of liquid were in the mixture?

Find each missing addend:

3. \(5 + N + 2 = 11 \)

4. \(2 + 6 + N = 15 \)

Subtract. Check by adding.

5. \(\frac{13}{6} - \frac{5}{6} \)

6. \(\frac{16}{6} - \frac{8}{6} \)

7. \(\frac{13}{6} - \frac{7}{6} \)

8. \(\frac{12}{6} - \frac{8}{6} \)

Use digits to write each number:

9. two hundred fourteen

10. five hundred thirty-two

Use words to write each number:

11. 301

12. 320
13. Use words to write the number shown by this model:

![Number Model]

14. Write a number sentence for this picture:

![Number Sentence]

Write the rule and the next three numbers of each counting sequence:

15. 12, 18, 24, ____ , ____ , ____ , ...

16. 15, 18, 21, ____ , ____ , ____ , ...

Find the missing number in each counting sequence:

17. 35, 42, ____ , 56, ...

18. 40, ____ , 56, 64, ...

19. How much money is shown by this picture?

![Money]

20. The numbers 7, 8, and 15 form a fact family. Write two addition facts and two subtraction facts using these three numbers.

21. Brad was twelfth in line. His sister was sixth in line. How many people were between Brad and his sister?

22. Six nickels is equal to how many cents? Count by fives.

23. 4 + 7 + 8 + 5 + 4

24. 2 + 3 + 5 + 8 + 5

25. 5 + 8 + 6 + 4 + 3 + 7 + 2

26. Which addition sentence is related to 12 − 5 = 7?

A. 7 + 5 = 12
B. 12 + 5 = 17
C. 12 + 7 = 19
D. 12 − 7 = 5
LESSON 8

Adding Money

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Add one less than ten to a number:

a. 56 + 9 b. 63 + 9 c. 48 + 9

Review:

d. 74 + 20 e. 60 + 30 f. 49 + 40

Problem Solving:
Terrell has a total of nine coins in his left and right pockets. He has some coins in each pocket. He has more coins in his right pocket than in his left pocket. Make a table that lists the possible number of coins in each pocket.

NEW CONCEPT

Sakura had $24. Then on her birthday she was given $15. How much money does Sakura now have?

We can use $10 bills and $1 bills to add $15 to $24.

Sakura had $24.

She was given $15.

Now she has …

The total is 3 tens and 9 ones, which is $39.
We can also add $24 and $15 with pencil and paper. When we use pencil and paper, we first add the digits in the ones place. Then we add the digits in the tens place. (Remember to include the dollar sign in the answer.)

Example Add: $32 + $7

Solution To add with pencil and paper, we write the numbers so that the digits in the ones place are lined up.

\[
\begin{array}{c}
32 \\
+ 7 \\
\hline
39
\end{array}
\]

LESSON PRACTICE

Practice set Add:

a. $53 + $6

b. $14 + $75

c. $36 + $42

d. $27 + $51

e. $15 + $21

f. $32 + $6

MIXED PRACTICE

Problem set Use digits to write each number:

1. three hundred forty-three

2. three hundred seven

3. Use words to write the number 592.

Find each missing addend:

\[
\begin{array}{c}
4 \quad 2 \\
4 \quad R \\
N \quad 6 \\
\hline
12
\end{array}
\]

\[
\begin{array}{c}
5 \quad 1 \\
T \quad 7 \\
N \quad 13 \\
\hline
39
\end{array}
\]

\[
\begin{array}{c}
8 \quad $25 \\
9 \quad $85 \\
10 \quad $22 \\
11 \quad $40 \\
\hline
14\end{array}
\]

\[
\begin{array}{c}
12 \quad 13 \\
14 \quad 17 \\
15 \quad 14 \\
\hline
9 \quad 5 \quad 8 \quad 6
\end{array}
\]

16. Grey has $23. Beckie has $42. Together, Grey and Beckie have how much money?
17. Use words to write the number shown by this model:

```
  |   |
  |   |
  |   |
```

18. Sarah was born on the fifth day of August in 1994. Write her birth date in month/day/year form.

Write the rule and the next three numbers of each counting sequence:

19. 12, 15, 18, ____ , ____ , ____ , …

20. 28, 35, 42, ____ , ____ , ____ , …

21. 5
 8
 7
 6
 4
 4
 +3

22. 9
 7
 6
 4
 8
 +7

23. 2
 5
 7
 3
 5
 +4

24. Show six ways to add 5, 6, and 7.

25. Write two addition facts and two subtraction facts using 7, 8, and 15.

26. If $7 + \diamond = 15$, then which of the following is not true?

 A. $\diamond - 7 = 15$

 B. $15 - 7 = \diamond$

 C. $15 - \diamond = 7$

 D. $\diamond + 7 = 15$
Lesson 9

Adding with Regrouping

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Nineteen is one less than 20. When adding 19 to a number, we may mentally add 20 and then think of the number that is one less than the sum.

<table>
<thead>
<tr>
<th></th>
<th>a. 36</th>
<th>b. 36</th>
<th>c. 47</th>
<th>d. 47</th>
<th>e. 24</th>
<th>f. 24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ 20</td>
<td>+ 19</td>
<td>+ 20</td>
<td>+ 19</td>
<td>+ 20</td>
<td>+ 19</td>
</tr>
</tbody>
</table>

Patterns:
The days of the week repeat. Seven days before Saturday was Saturday, and seven days after Saturday is Saturday again. What day is ten days after Saturday? What day was ten days before Saturday? What day is seventy days after Saturday?

NEW CONCEPT

Karyn had $39. She earned $14 more by raking leaves. How much money does Karyn now have?

We may use $10 bills and $1 bills to add $14 to $39.

Karyn had $39.

She earned $14.

Now she has ...
Since there are more than ten bills in the right-hand column, we exchange ten of the $1 bills for one $10 bill.

Now we have 5 tens and 3 ones, which is $53.

We use a similar method when we add numbers with pencil and paper. To add 14 to 39, we add the ones and get 13.

Thirteen ones is the same as 1 ten and 3 ones. We write the 3 in the ones place and add the 1 ten to the other tens. We show this by writing a 1 either above the column of tens or below it. Then we add the tens.
LESSON PRACTICE

Practice set Solve each problem using money manipulatives. Then add using pencil and paper:

\[
\begin{align*}
\text{a.} & \quad \$36 + \$29 = \$65 \\
\text{b.} & \quad \$47 + $8 = $55 \\
\text{c.} & \quad \$57 + $13 = $70
\end{align*}
\]

Use pencil and paper to add:

\[
\begin{align*}
\text{d.} & \quad 68 + 24 = 92 \\
\text{e.} & \quad $59 + $8 = $67 \\
\text{f.} & \quad 46 + 25 = 71
\end{align*}
\]

MIXED PRACTICE

Problem set Use digits to write each number:

1. six hundred thirteen \(\text{(7)}\)
2. nine hundred one \(\text{(7)}\)
3. Use words to write 941. \(\text{(7)}\)

Find each missing addend:

\[
\begin{align*}
\text{4.} & \quad 2 + F = 11 \\
\text{5.} & \quad 5 + 2 = 13 \\
\text{6.} & \quad H + 7 = 15 \\
\text{7.} & \quad 2 + N = 16 \\
\text{8.} & \quad 33 + 8 = 41 \\
\text{9.} & \quad $47 + $18 = $65 \\
\text{10.} & \quad 27 + 69 = 96 \\
\text{11.} & \quad $49 + $25 = $74 \\
\text{12.} & \quad \boxed{17} - 8 = \boxed{9} \\
\text{13.} & \quad \boxed{12} - 6 = \boxed{6} \\
\text{14.} & \quad 9 - 7 = 2 \\
\text{15.} & \quad 13 - 6 = 7
\end{align*}
\]

16. What is the name for the answer when we add? \(\text{(1)}\)
17. What is the name for the answer when we subtract? \(\text{(6)}\)
18. Which month is two months after the twelfth month? \(\text{(5)}\)

Write the rule and the next three numbers of each counting sequence:

19. 30, 36, 42, _____, _____, _____, ... \(\text{(3)}\)
20. 28, 35, 42, _____, _____, _____, ... \(\text{(3)}\)
21. Which digit is in the hundreds place in 843?

22. \(28 + 6\)

23. \(47 + 28\)

24. \(35 + 27\)

25. Mike bought pants for $28 and a shirt for $17. Altogether, how much did the pants and shirt cost? Write a number sentence for this problem.

26. What number does this model stand for?

A. 31
B. 13
C. 103
D. 130
Lesson 10

Even Numbers • Odd Numbers

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Add 9 or 19 to a number:

a. 28 + 9 b. 36 + 19 c. 43 + 9

da. 25 + 19 e. 56 + 9 f. 45 + 19

Problem Solving:
Terrell has a total of ten coins in his left and right pockets. He has four more coins in his right pocket than in his left pocket. How many coins does Terrell have in each pocket?

NEW CONCEPTS

Even numbers
The numbers we say when we count by twos are even numbers. Notice that every even number ends with either 2, 4, 6, 8, or 0.

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, ...

The list of even numbers goes on and on. We do not begin with zero when we count by twos. However, the number 0 is an even number.

Example 1
Which one of these numbers is an even number?

463 285 456

Solution
We can tell whether a number is even by looking at the last digit. A number is an even number if the last digit is even. The last digits of these numbers are 3, 5, and 6. Of these, the only even digit is 6, so the even number is 456.

Odd numbers
If a whole number is not an even number, then it is an odd number. We can make a list of odd numbers by beginning with the number 1. Then we add two to get the next odd number, add two more to get the next odd number, and so on. The sequence of odd numbers is

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, ...
Example 2 Use the digits 2, 7, and 6 to write two three-digit odd numbers.

Solution Since any number that ends with either 2 or 6 is even, both numbers must end with 7.

\[267 \quad 627 \]

Example 3 List the five three-digit odd numbers that have a 7 in the hundreds place and a 5 in the tens place.

Solution The first two digits are 7 and 5.

\[\begin{array}{c}
7 \\
5 \\
\end{array} \]

For the number to be odd, the last digit must be either 1, 3, 5, 7, or 9. So the five numbers are

\[751, 753, 755, 757, \text{ and } 759 \]

An even number of objects can be separated into two equal groups. Six is an even number. Here we show six dots separated into two equal groups:

\[\begin{array}{c}
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\end{array} \]

If we try to separate an odd number of objects into two equal groups, there will be one extra object. Five is an odd number. Five dots will not separate into two equal groups, because one dot is left over.

\[\begin{array}{c}
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\end{array} \quad \text{one dot left over} \]

Example 4 The same number of boys and girls were in the classroom. Which of these numbers could be the total number of students in the classroom?

A. 25
B. 26
C. 27

Solution An even number of students can be divided into two equal groups. Since there are an equal number of boys and girls, there must be an even number of students in the classroom. The only even number among the choices is B. 26.
LESSON PRACTICE

Practice set Write “even” or “odd” for each number:

a. 563 b. 328 c. 99 d. 0

e. List the five three-digit even numbers that have a 6 in the hundreds place and a 3 in the tens place.

MIXED PRACTICE

Problem set Use digits to write each number:

1. five hundred forty-two
2. six hundred nineteen

3. The numbers 4, 7, and 11 form a fact family. Write two addition facts and two subtraction facts using these three numbers.

Use words to write each number:

4. 903
5. 746

6. List the five three-digit odd numbers that have a 5 in the hundreds place and a 0 in the tens place.

Find each missing addend:

7. N
 \(+ 3 \)
 \(14 \)

8. \(P \)
 \(+ 2 \)
 \(13 \)

9. Q
 \(+ 7 \)
 \(14 \)

10. R
 \(+ 2 \)
 \(11 \)

11. \(\text{(6)} \)
 \(15 \)
 \(- 7 \)

12. \(\text{(6)} \)
 \(14 \)
 \(- 7 \)

13. \(\text{(6)} \)
 \(17 \)
 \(- 8 \)

14. \(\text{(6)} \)
 \(11 \)
 \(- 6 \)

15. \(\text{(9)} \)
 \$25
 \(+ \$38 \)

16. \(\text{(9)} \)
 \$19
 \(+ \$34 \)

17. \(\text{(9)} \)
 42
 \(+ 8 \)

18. \(\text{(9)} \)
 17
 \(+ 49 \)

Write the rule and the next three numbers of this counting sequence:

19. \(\text{(3)} \)
 18, 21, 24, _____, _____, _____, ...

20. What is the eighth number in this counting sequence?
 \(\text{(3, 5)} \)
 6, 12, 18, 24, ...
21. If John has $6 in a piggy bank, $12 in his wallet, and $20 in his drawer, how much money does John have in all three places? Write a number sentence for this problem.

22. \[2 + 3 + 5 + 7 + 8 + 4 + 5 \]

23. Write today's date in month/day/year form.

24. Use words to write the number shown by this model:

25. What number is the largest two-digit even number?

26. If \(\Delta + 4 = 12 \), then which of these is not true?

 A. \(4 + \Delta = 12 \) B. \(12 - \Delta = 4 \)
 C. \(12 + 4 = \Delta \) D. \(12 - 4 = \Delta \)
Focus on

Number Lines

When we “draw a line” with a pencil, we are actually drawing a **line segment**. A line segment is part of a line.

A **line** continues in opposite directions without end. To illustrate a line, we draw an arrowhead at each end of a line segment. The arrowheads show that the line continues.

To make a **number line**, we begin by drawing a line. Next, we put **tick marks** on the line, keeping an equal distance between the marks.

Then we label the marks with numbers. On some number lines every mark is labeled. On other number lines only some of the marks are labeled. The labels on a number line tell us how far the marks are from zero.

Example 1 To what number is the arrow pointing?

Solution If we count by ones from zero, we see that our count matches the numbers labeled on the number line. So we know that the distance from one tick mark to the next tick mark is 1.

We find that the arrow points to the number **7**.
On some number lines the distance from one tick mark to the next is not 1. We may need to count by twos or by fives or by tens or by some other number to find the distance between tick marks.

Example 2 To what number is the arrow pointing?

Solution If we count by ones from tick mark to tick mark, our count does not match the numbers labeled on the number line. We try counting by twos and find that our count does match the number line. So the distance from one tick mark to the next tick mark on this number line is 2. The arrow points to a mark that is one mark to the right of 4 and one mark to the left of 8. The number that is two more than 4 and two less than 8 is 6.

Example 3 To what number is the arrow pointing?

Solution Zero is not shown on this number line, so we will start our count at 40. Counting by ones from tick mark to tick mark does not fit the pattern. Neither does counting by twos. Counting by fives does fit the pattern.

We find that the arrow points to the number 55.

To what number is each arrow pointing in problems 1–4?

1.

2.
Numbers greater than zero are called **positive numbers**. A number line may also show numbers less than zero. Numbers less than zero are called **negative numbers**. Zero is neither positive nor negative. To write a negative number using digits, we place a negative sign (minus sign) to the left of the digit.

Example 4

(a) Use words to write –10.

(b) Use digits to write negative twelve.

Solution

(a) **negative ten**

(b) **–12**

Example 5

Write the next four numbers in each counting sequence:

(a) ..., 10, 8, 6, 4, _____, _____, _____, _____, ...

(b) ..., 9, 7, 5, 3, _____, _____, _____, _____, ...

Solution

Even and odd numbers may be negative or positive.

(a) This is a sequence of even numbers. We count down by twos and write the next four even numbers. Notice that zero is even.

..., 10, 8, 6, 4, **2**, **0**, **−2**, **−4**, ...

(b) This is a sequence of odd numbers. We count down by twos and write the next four odd numbers.

..., 9, 7, 5, 3, **1**, **−1**, **−3**, **−5**, ...
Example 6 To what number is the arrow pointing?

Solution Counting by fives fits the pattern. The arrow points to a number that is five less than zero, which is -5.

5. Write the number that is fifteen less than zero
 (a) using digits.
 (b) using words.

6. Write the next four numbers in this counting sequence:
 $\ldots, 20, 15, 10, 5, \underline{\hphantom{0}}, \underline{\hphantom{0}}, \underline{\hphantom{0}}, \underline{\hphantom{0}}, \ldots$

To what number is each arrow pointing in problems 7 and 8?

7.

8.

A number line can help us compare two numbers. When we compare two numbers, we decide whether one of the numbers is greater than, equal to, or less than the other number.

To show the comparison for two numbers that are not equal, we may use the greater than/less than symbols:

$$> \quad <$$

The symbol points to the smaller number. We read from left to right. If the pointed end comes first, we say “is less than.”

$$3 < 4 \quad \text{“Three is less than four.”}$$

If the open end comes first, we say “is greater than.”

$$4 > 3 \quad \text{“Four is greater than three.”}$$
A number line is usually drawn so that the numbers become
greater and greater as we move to the right. When comparing
two numbers, we might think about their positions on the
number line. To compare 2 and \(-3\), for example, we see that 2
is to the right of \(-3\). So we say that 2 is greater than \(-3\).

\[2 > -3\]

Example 7 Compare: 2 \(\bigcirc\) \(-2\)

Solution The numbers 2 and \(-2\) are not equal. On a number line we see
that 2 is greater than \(-2\).

We replace the circle with the proper comparison symbol and
write

\[2 > -2\]

Example 8 (a) Use words to write the comparison 5 > \(-10\).

(b) Use digits and a comparison sign to write “Negative three
is less than negative two.”

Solution (a) **Five is greater than negative ten.**

(b) \(-3 < -2\)

Compare:

9. \(-3 \bigcirc 1\) \hspace{2cm} 10. \(3 \bigcirc 2\)

11. \(2 + 3 \bigcirc 3 + 2\) \hspace{2cm} 12. \(-4 \bigcirc -5\)

13. Use words to write the comparison \(-1 < 0\).

14. Use digits and a comparison symbol to write “Negative
two is greater than negative three.”
Example 9 Here we show the comparison “Five is greater than three”:

\[5 > 3 \]

Rewrite the comparison with 3 on the left and 5 on the right. Then use words to state the comparison.

Solution The numbers are not equal. So if we reverse the order of the numbers, we must also reverse the comparison symbol.

\[3 < 5 \]

This comparison shows that three is less than five.

Rewrite each comparison below by reversing the order of the terms being compared.

15. \(-1 < 1\)
16. \(2 + 2 = 4\)

17. \(0 > -2\)
18. \(1 + 2 < 4\)
Addition Stories with Missing Addends

In the “some and some more” problems we have worked so far, both the “some” number and the “some more” number were given in the problem. We added the numbers to find the total. In this lesson we will practice story problems in which the total is given and an addend is missing. We solve these problems just like arithmetic problems that have a missing addend—we subtract to find the missing number.

Example 1
Walter had 8 marbles. Then Lamont gave him some more marbles. Walter has 17 marbles now. How many marbles did Lamont give him?

Solution
If we can recognize the pattern, we can solve the problem. Walter had some marbles. Then he received some more marbles. This problem is a “some and some more” story, so it has an addition pattern. We know the “some” number. We know the total number. We put these numbers into the pattern.

Pattern: Some + some more = total

Problem: 8 marbles + M marbles = 17 marbles

We see that one of the addends is missing. One way to find the missing number is to ask an addition question.

“Eight plus what number equals seventeen?”

$8 + M = 17$
Another way is to ask a subtraction question.

“Seventeen minus eight equals what number?”

\[17 - 8 = M \]

Both questions have the same answer, nine. Lamont gave Walter 9 marbles.

Example 2

Jamie had some pies. Then Frank gave her 5 more pies. Now Jamie has 12 pies. How many pies did Jamie have at first?

Solution

This is a “some and some more” story problem. We fill in the pattern.

\[
\begin{array}{c c}
\text{Some} & N \text{ pies} \\
+ \text{ Some more} & + 5 \text{ pies} \\
\hline
\text{Total} & 12 \text{ pies}
\end{array}
\]

Finding the answer is easy now. We can find the missing number by asking an addition question or by asking a subtraction question.

“Five added to what number equals twelve?” (7)

“ Twelve minus five equals what number?” (7)

Seven is the answer to either question. At first Jamie had 7 pies.

LESSON PRACTICE

Practice set

For each problem, write an addition pattern. Then work the problem.

a. Lucille had 4 marigolds. Lola gave her some more marigolds. Now Lucille has 12 marigolds. How many marigolds did Lola give Lucille?

b. Sid had some agates. Then he found 8 more agates. Now he has 15 agates. How many agates did he have at first?

MIXED PRACTICE

Problem set

1. Carmela saw 4 horses at the fair. Then she saw 13 horses on a farm. How many horses did Carmela see in all?

2. Talitha read 6 pages before lunch. After lunch she read some more. If Talitha read 13 pages in all, how many pages did she read after lunch?

3. Use digits to write the number six hundred forty-two.

4. Use digits and symbols to write this comparison: “Negative twelve is less than zero.”
5. Compare: \(-2 \bigcirc 2 \)

6. List the five three-digit odd numbers that have a 5 in the hundreds place and a 7 in the tens place.

7. To what number is each arrow pointing?

8. The books were put into two stacks so that an equal number of books was in each stack. Was the total number of books an odd number or an even number?

9. 5
10. \(N \)
11. 7
12. \(M \)

\[
\begin{align*}
&\quad \quad \quad \quad B \\
&\quad + \quad 7 \\
&\quad 18 \\
&\quad \quad \quad + \quad 3 \\
&\quad 15 \\
&\quad \quad \quad + \quad 4 \\
&\quad 12 \\
&\quad \quad \quad + \quad 8 \\
&\quad 14 \\
&\quad 12 \\
&\quad 13 \\
\end{align*}
\]

13. 12
14. 14
15. 12
16. 13

\[
\begin{align*}
&\quad \quad \quad \quad (-) \\
&\quad - \quad 3 \\
&\quad 13 \\
&\quad - \quad 7 \\
&\quad 13 \\
&\quad - \quad 8 \\
&\quad 13 \\
&\quad - \quad 6 \\
&\quad 13 \\
\end{align*}
\]

17. 74
18. 93
19. 28
20. 28

\[
\begin{align*}
&\quad \quad \quad \quad (+) \\
&\quad + \quad 18 \\
&\quad 92 \\
&\quad + \quad 39 \\
&\quad 131 \\
&\quad + \quad 45 \\
&\quad 176 \\
&\quad + \quad 47 \\
&\quad 223 \\
\end{align*}
\]

Write the next three numbers in each counting sequence:

21. \(\ldots, 12, 9, 6, \quad \quad, \quad \quad, \quad \quad, \ldots \)

22. \(\ldots, 30, 36, 42, \quad \quad, \quad \quad, \quad \quad, \ldots \)

23. The numbers 5, 9, and 14 form a fact family. Write two addition facts and two subtraction facts using these three numbers.

24. \(4 + 3 + 5 + 8 + 7 + 6 + 2 \)

25. Show six ways to add 7, 8, and 9.

26. If \(3 + \Box = 7 \) and if \(\blacksquare = 5 \), then \(\Box + \blacksquare \) equals which of the following?

A. 4 B. 5 C. 8 D. 9
LESSON 12
Missing Numbers in Subtraction

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Add a number ending in 9 to another number:

a. 52 + 29
b. 63 + 9
c. 14 + 39
d. 26 + 49
e. 57 + 19
f. 32 + 59

Patterns:
This “hundred number chart” lists the whole numbers from 1 to 100. The shaded squares on this chart contain even numbers. On another chart, shade the squares that contain the numbers we say when we count by threes from 3 to 99.

NEW CONCEPT

Since Lesson 1 we have practiced finding missing numbers in addition problems. In this lesson we will practice finding missing numbers in subtraction problems.

Remember that we “subtract down” to find the bottom number and “add up” to find the top number.

\[
\text{SUBTRACT DOWN} \quad 9 - 6 \quad \text{ADD UP} \quad \text{Three plus six}
\]

Nine minus six equals three. Three plus six equals nine.

We may use either “subtracting down” or “adding up” to find the missing number in a subtraction problem.

Example 1 Find the missing number:
\[
\frac{14}{N} - \frac{6}{6}
\]
Lesson 12

Solution We may either “subtract down” or “add up.” Which way seems easier?

<table>
<thead>
<tr>
<th>Subtract Down</th>
<th>Add Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourteen minus what number equals six?</td>
<td>Six plus what number equals fourteen?</td>
</tr>
</tbody>
</table>
| \[
\begin{align*}
14 & \quad \frac{14}{N} \\
-8 & \quad 6 \\
\end{align*}
\] |

Often it is easier to find a missing number in a subtraction problem by “adding up.” If we add 8 to 6, we get 14. So the missing number is 8. We can check our answer by replacing \(N \) with 8 in the original problem.

\[
\begin{align*}
14 & \quad 8 \\
- & \quad 6 \\
\end{align*}
\]

Since \(14 - 8 = 6 \), we know our answer is correct.

Example 2 Find the missing number: \(B \)

\[
\begin{align*}
-5 & \quad 7 \\
\end{align*}
\]

Solution Try both “subtracting down” and “adding up.”

<table>
<thead>
<tr>
<th>Subtract Down</th>
<th>Add Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>What number minus five equals seven?</td>
<td>Seven plus five equals what number?</td>
</tr>
</tbody>
</table>
| \[
\begin{align*}
B & \quad -5 \\
-7 & \quad \end{align*}
\] |

Since 7 plus 5 is 12, the missing number must be 12. We replace \(B \) with 12 in the original problem to check our answer.

\[
\begin{align*}
12 & \quad 5 \\
- & \quad 7 \\
\end{align*}
\]

LESSON PRACTICE

Practice set Find each missing number. Check your answers.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>14</td>
<td>b.</td>
<td>(N)</td>
<td>c.</td>
</tr>
<tr>
<td></td>
<td>- (N)</td>
<td></td>
<td>- 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem set

1. Laura found nine acorns in the forest. Then she found some more acorns in her backyard. If Laura found seventeen acorns in all, how many acorns did she find in the backyard?

2. At first thirty-five butterflies were flying about. Later, twenty-seven more butterflies began to fly about. In all, how many butterflies were flying about?

3. Use digits to write the number seven hundred fifteen.

4. Use words to write the number shown by this model:

5. Nathan’s little sister was born on the seventh day of June in 2002. Write her birth date in month/day/year form.

6. Write the largest three-digit number that has a 6 in the ones place and a 4 in the tens place.

7. To what number is the arrow pointing?

8. \[\begin{array}{c}
5 \\
5 \\
N \\
+ 6 \\
15 \\
\end{array} \]

9. \[\begin{array}{c}
A \\
2 \\
+ 5 \\
15 \\
\end{array} \]

10. \[\begin{array}{c}
7 \\
2 \\
+ N \\
15 \\
\end{array} \]

11. \[\begin{array}{c}
4 \\
A \\
+ 2 \\
15 \\
\end{array} \]

12. \[\begin{array}{c}
N \\
2 \\
- 6 \\
8 \\
\end{array} \]

13. \[\begin{array}{c}
16 \\
(6) \\
- 8 \\
\end{array} \]

14. \[\begin{array}{c}
14 \\
(6) \\
- 7 \\
\end{array} \]

15. \[\begin{array}{c}
12 \\
(12) \\
- A \\
7 \\
\end{array} \]

16. \[\begin{array}{c}
B \\
6 \\
- 6 \\
6 \\
\end{array} \]

17. \[\begin{array}{c}
13 \\
C \\
- C \\
8 \\
\end{array} \]

18. \[\begin{array}{c}
$48 \\
+ $16 \\
\end{array} \]

19. \[\begin{array}{c}
$37 \\
+ $14 \\
\end{array} \]
Write the next three numbers in each counting sequence:

20. ..., 28, 35, 42, _____, _____, _____, ...

21. ..., 18, 21, 24, _____, _____, _____, ...

22. How many cents is nine nickels? Count by fives.

23. Compare: $-3 \bigcirc -5$

24. Write the number that is eleven less than zero
 (a) using words.
 (b) using digits.

25. $7 + 3 + 8 + 5 + 4 + 3 + 2$

26. “Five subtracted from N” can be written as which of the following?
 A. $5 - N$ B. $N - 5$ C. $5 + N$ D. $N + 5$
Adding Three-Digit Numbers

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:

Review:

\[
\begin{align*}
a. & \quad 30 + 60 & b. & \quad 74 + 19 & c. & \quad 46 + 9 \\
d. & \quad 63 + 29 & e. & \quad 42 + 50 & f. & \quad 16 + 39
\end{align*}
\]

Problem Solving:

There were more than 20 but fewer than 30 math books on the shelf. Todd arranged the books into two equal stacks, and then he rearranged the books into three equal stacks. Use these clues to find how many math books were on the shelf.

NEW CONCEPT

Esmerelda and Denise were playing a game. Esmerelda had $675. Denise landed on Esmerelda’s property, so she paid Esmerelda $175 for rent. How much money does Esmerelda have now?

We can use bills to add $175 to $675. The sum is 7 hundreds, 14 tens, and 10 ones.

\[
\begin{align*}
\text{6} & \quad \text{1} \\
\text{7} & \quad \text{7} \\
\text{5} & \quad \text{5}
\end{align*}
\]

We can exchange 10 ones for 1 ten and 10 tens for 1 hundred, giving us 8 hundreds, 5 tens, and no ones. Thus Esmerelda has $850.
We can also use pencil and paper to solve this problem. First we add the ones and regroup. Then we add the tens and regroup. As a final step we add the hundreds.

Example

Add: 456

+ 374

Solution

We begin by adding the digits in the ones column, and we move one column at a time to the left. We write the first digit of two-digit answers either above or below the next place's column. The sum is 830.

LESSON PRACTICE

Practice set

Add:

a. $579 + 186$

b. $408 + 243$

c. $498 + 89$

d. $458 + 336$

e. $56 + 569$

MIXED PRACTICE

Problem set

1. Seventy-seven students ran in circles and waved their arms. Nineteen students watched in amazement. How many students were there in all?

2. Five of the twelve children at the party were girls. How many boys were at the party?

3. Use words to write the number 913.

4. Use digits to write the number seven hundred forty-three.

5. Use digits and symbols to write this comparison: “Seventy-five is greater than negative eighty.”
6. Compare:
\[(\text{Inv. 1})\]
(a) \(413 \bigcirc 314\) \hspace{1cm} (b) \(-4 \bigcirc 3\)

7. The numbers 7, 9, and 16 form a fact family. Write two addition facts and two subtraction facts using these three numbers.

8. To what number is each arrow pointing?
\[(\text{Inv. 1})\]
(a)
(b)

9. \(\begin{array}{l}
475 + 332 \quad 714 + 226 \quad 743 + 187 \quad 576 + 228
\end{array}\)

10. \(\begin{array}{l}
\text{8}
\end{array}\)

14. \(\begin{array}{l}
4
\end{array}\)

15. \(\begin{array}{l}
9
\end{array}\)

16. \(\begin{array}{l}
N
\end{array}\)

17. \(\begin{array}{l}
8
\end{array}\)

18. \(\begin{array}{l}
17
\end{array}\)

19. \(\begin{array}{l}
13
\end{array}\)

20. \(\begin{array}{l}
N
\end{array}\)

21. \(\begin{array}{l}
14
\end{array}\)

22. \(\begin{array}{l}
16
\end{array}\)

23. \(\begin{array}{l}
N
\end{array}\)

24. \(\begin{array}{l}
$49 + $76
\end{array}\)

25. Write the next three numbers in each counting sequence:
\[(3, \text{Inv. 1})\]
(a) \(\ldots, 28, 35, 42, \ldots, \ldots, \ldots, \ldots\)

(b) \(\ldots, 15, 10, 5, \ldots, \ldots, \ldots, \ldots\)

26. What number shows the total if these sets are put together?
\[(2)\]

A. 26 \hspace{1cm} B. 32 \hspace{1cm} C. 58 \hspace{1cm} D. 13
LESSON 14

Subtracting Two-Digit and Three-Digit Numbers • Missing Two-Digit Addends

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Add a number ending in two zeros to another number:

a. 300 + 400 b. 600 + 300 c. 250 + 300

Review:

d. 63 + 29 e. 54 + 19 f. 28 + 49

Patterns:
On a hundred number chart, shade the squares that contain the numbers we say when we count by fours from 4 to 100. Which of the shaded squares contain even numbers?

NEW CONCEPTS

Subtracting two-digit and three-digit numbers

Kim had $37. She spent $23 to buy a game. How much money did Kim have then?

We will use bills to illustrate this problem.

Kim had $37.

She spent $23.

Then she had ...

The picture above shows that Kim had 3 tens and 7 ones and that she took away 2 tens and 3 ones. We see that she had 1 ten and 4 ones left over, which is $14.
The problem is a subtraction problem. With pencil and paper, we solve the problem this way:

Example 1 Subtract: 85 – 32

Solution We read this problem as “eighty-five minus thirty-two.” This means that 32 is subtracted from 85. We can write the problem and its answer like this:

\[
\begin{array}{c}
85 \\
- 32 \\
\hline
53
\end{array}
\]

Example 2 Subtract 123 from 365.

Solution The numbers in a subtraction problem follow a specific order. This problem means, “start with 365 and subtract 123.” We write the problem and its answer like this:

\[
\begin{array}{c}
365 \\
- 123 \\
\hline
242
\end{array}
\]

Missing two-digit addends The missing addend in this problem has two digits. We can find the missing addend one digit at a time.

6 plus what number is 8? (2)
5 plus what number is 9? (4)

The missing digits are 4 and 2. So the missing addend is 42.

Example 3 Find the missing addend: \[
\begin{array}{c}
36 \\
+ _ _ \\
\hline
87
\end{array}
\]

Six plus what number is 8? (2)
Five plus what number is 9? (4)
Solution The letter W stands for a two-digit number. We first find the missing digit in the ones place. Then we find the missing digit in the tens place.

$$\begin{array}{c}
36 \\
+ W \\
\hline
87 \\
\end{array}$$

Six plus what number is seven? (1)

$$\begin{array}{c}
36 \\
+ 51 \\
\hline
87 \\
\end{array}$$

Three plus what number is eight? (5)

The missing addend is 51.

We check our answer by replacing W with 51 in the original problem.

$$\begin{array}{c}
36 \\
+ 51 \\
\hline
87 \\
\end{array}$$

check

Example 4 Find the missing addend: $M + 17 = 49$

Solution We want to find the number that combines with 17 to total 49. The missing addend contains two digits. We will find the digits one at a time.

$$\begin{array}{c}
M \\
+ 17 \\
\hline
49 \\
\end{array}$$

Two plus seven is nine.

$$\begin{array}{c}
3 \\
+ 0 \\
\hline
3 \\
\end{array}$$

Three plus one is four.

We find that the missing number is 32. We check our answer.

$$\begin{array}{c}
M \\
+ 17 \\
\hline
49 \\
\end{array}$$

check

32 + 17 = 49

LESSON PRACTICE

Practice set Solve problems a and b using money manipulatives. Then subtract using pencil and paper.

a. $485 - $242

b. $56 - $33

c. Subtract 53 from 97.

d. Subtract twenty-three from fifty-four.

Find the missing addend in each problem:

e. $24 + Q = 65$

f. $M + 31 = 67$

g. $36 + W = 99$

h. $Y + 45 = 99$
1. Forty-two red surfboards were on the first wave. Seventeen red surfboards were on the second wave. How many red surfboards were on the first two waves?

2. Mariabella saw four green grasshoppers in the first hour. In the second hour she saw some more green grasshoppers. She saw eleven green grasshoppers in all. How many green grasshoppers did she see in the second hour?

3. Use the digits 1, 2, and 3 once each to write an even number less than 200.

4. Use the numbers 9, 7, and 2 to write two addition facts and two subtraction facts.

5. Subtract seven hundred thirteen from eight hundred twenty-four.

6. Compare:
 (a) 704 〇 407
 (b) −3 〇 −5

7. What is the total number of days in the first two months of a common year?

8. To what number is the arrow pointing?

9. $346 + 298 = 644$
10. $499 + 275 = 774$
11. $421 + 389 = 810$
12. $506 + 210 = 716$
13. $438 \quad 206 = 232$
14. $17 \quad A = 17 - A$
15. $7 \quad B = 7 + B$
16. $5 \quad C = 5 - C$
17. $8 \quad D = 8 + D$
18. $15 \quad K = 15 - K$
19. $3 \quad N = 3 + N$
20. $476 \quad 252 = 224$
21. 22. 23. 24. 25.

26. If \(\Box - 7 = 2 \), then which of these is not true?

A. \(7 - \Box = 2 \)
B. \(\Box - 2 = 7 \)
C. \(2 + 7 = \Box \)
D. \(\Box = 7 + 2 \)
Lesson 15

Subtracting Two-Digit Numbers with Regrouping

Warm-Up

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Add a number ending in two zeros to another number:
- a. 400 + 500
- b. 600 + 320
- c. 254 + 100

Review:
- d. 64 + 29
- e. 39 + 25
- f. 19 + 27

Patterns:
Copy this design of ten circles on your paper, following the same pattern as described in Lesson 5. Then, outside each circle, write the sum of the numbers in that circle and the two circles on either side. For example, the number outside of circle 1 should be 13.

New Concept

Roberto had $53. He spent $24 to buy a jacket. Then how much money did Roberto have?

We will use pictures of bills to help us understand this problem.

Roberto had $53.

He spent $24.

Then he had ...
The picture above shows that Roberto had 5 tens and 3 ones and that he took away 2 tens and 4 ones. We see that Roberto had enough tens but not enough ones. To get more ones, Roberto traded 1 ten for 10 ones.

After trading 1 ten for 10 ones, Roberto had 4 tens and 13 ones. Then he was able to take 2 tens and 4 ones from his money to pay for the jacket. The purchase left him with 2 tens and 9 ones, which is $29.

Trading 1 ten for 10 ones is an example of regrouping, or exchanging. (In subtraction, this process may also be called borrowing.) We often need to regroup when we subtract using pencil and paper.

Example Find the difference: 56 – 29

Solution We write the first number on top.

\[
\begin{array}{c}
56 \\
- 29 \\
\hline
? \\
\end{array}
\]

We understand that 56 means “50 and 6” and that 29 means “20 and 9.” Since 6 is less than 9, we need to regroup before we can subtract. We take 10 from 50 and...
add it to the 6. This makes “50 and 6” into “40 and 16,” which is still equal to 56.

\[
\begin{array}{c}
40 \\
50 \text{ and } 6 \\
- \quad 20 \text{ and } 9 \\
\hline
20 \text{ and } 7 \\
\end{array}
\]

We subtract and get “20 and 7,” which is 27. This is how we usually show the regrouping:

\[
\begin{array}{c}
4 \\
3 \quad 6 \\
- \quad 2 \quad 9 \\
\hline
2 \quad 7 \\
\end{array}
\]

LESSON PRACTICE

Practice set Use money manipulatives or draw pictures to show each subtraction:

\begin{align*}
a. \quad & \$53 - \$29 \\
b. \quad & \$56 - \$27 \\
c. \quad & \$42 - \$24 \\
d. \quad & \$60 - \$27 \\
\end{align*}

Use pencil and paper to find each difference:

\begin{align*}
e. \quad & 63 - 36 \\
f. \quad & 40 - 13 \\
g. \quad & 72 - 24 \\
h. \quad & 24 - 18 \\
\end{align*}

MIXED PRACTICE

Problem set

1. Jimmy found six hundred eighteen acorns under one tree. He found one hundred seventeen acorns under another tree. How many acorns did Jimmy find in all?

2. On the first day Richard the Lion-Hearted had sixteen knights. On the second day some more knights arrived, giving him a total of seventy-six knights. How many knights arrived on the second day?

3. Use the digits 3, 6, and 7 once each to write an even number less than 400.

4. Use words to write the number 605.

5. The smallest two-digit odd number is 11. What is the smallest two-digit even number?
6. Compare:
(a) 75 \(\bigcirc \) 57
(b) 5 + 7 \(\bigcirc \) 4 + 8

7. Subtract 245 from 375.

8. To what number is the arrow pointing?

9. 13. \(\frac{13}{13} \) $426 + $298
10. 14. \(\frac{13}{13} \) $278 + $456
11. 15. \(\frac{13}{13} \) 721 + 189
12. 16. \(\frac{13}{13} \) 409 + 198

9. 13. \(\frac{13}{13} \) D + 7
10. 14. \(\frac{12}{12} \) 18 – A
11. 15. \(\frac{14}{14} \) 38 + B
12. 16. \(\frac{12}{12} \) C – 4

17. 19. \(\frac{14}{14} \) $456 - $120
18. 20. \(\frac{15}{15} \) $54 - $27
19. 20. \(\frac{15}{15} \) 46 - 28
20. 20. \(\frac{15}{15} \) 35 - 16

21. What is the total number of days in the last two months of the year?

22. The numbers 5, 6, and 11 form a fact family. Write four addition/subtraction facts using these three numbers.

23. \(\frac{1}{1} \) 3 + 6 + 7 + 5 + 4 + 8

Write the next three numbers in each counting sequence:
24. \(\frac{3}{3} \) ..., 72, 63, 54, _____, _____, _____, ...

25. \(\frac{1}{1} \) ..., –7, –14, –21, _____, _____, _____, ...

26. If \(\Box = 6 \) and if \(\Box + \Delta = 10 \), then \(\Delta \) equals which of the following?

A. 3
B. 4
C. 5
D. 6
LESSON

16

Expanded Form • More on Missing Numbers in Subtraction

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Add three numbers:

a. 30 + 40 + 20
b. 300 + 400 + 200
c. 3 + 4 + 2

Review:

d. 36 + 19
e. 39 + 27
f. 44 + 29

Patterns:
The multiples of five are the numbers we say when we count by five: 5, 10, 15, 20, and so on. Shade the squares on a hundred number chart that contain a multiple of 5. Which of the shaded squares contain even numbers?

NEW CONCEPTS

Expanded form The number 365 means “3 hundreds and 6 tens and 5 ones.” We can write this as

\[300 + 60 + 5\]

This is the expanded form of 365.

Example 1 Write 275 in expanded form.

Solution \[200 + 70 + 5\]

Example 2 Write 407 in expanded form.

Solution There are no tens. We write the following: \[400 + 7\]

More on missing numbers in subtraction We have found missing numbers in subtraction problems by “subtracting down” or “adding up.” We can use these methods when subtracting numbers with one, two, or more digits.

Subtract Down

\[
\begin{array}{c}
56 \\
\text{\underline{W}} \\
14
\end{array}
\]

Six minus what number is four? (2)

Five minus what number is one? (4)

We find that the missing number is 42.
Lesson 16

Example 3 Find the missing number: \[
\begin{array}{c}
64 \\
- W \\
\hline
31 \\
\end{array}
\]

Solution We may find the missing number one digit at a time by “subtracting down” or “adding up.”

\[
\begin{array}{c|c}
64 & Four minus what number is one? (3) \\
- W & Six minus what number is three? (3) \\
\hline
31 & \\
\end{array}
\]

or

\[
\begin{array}{c|c}
64 & One plus what number is four? (3) \\
- W & Three plus what number is six? (3) \\
\hline
31 & \\
\end{array}
\]

We find that the missing number is 33. We check our work by using 33 in place of \(W \) in the original problem.

\[
\begin{array}{c|c|c}
64 & 64 \\
- W & - 33 \\
\hline
31 & 31 & check \\
\end{array}
\]

LESSON PRACTICE

Practice set*† Write each number in expanded form:

a. 86
b. 325
c. 507

Find each missing number:

\[
\begin{array}{c|c|c|c}
d. & 36 & e. & 47 \\
- P & - Q & - 22 \\
\hline
21 & 24 & 16 & \\
\end{array}
\]

g. \(W - 32 = 43 \)
h. \(43 - X = 32 \)

†The asterisk after “Practice set” indicates that additional practice problems intended for remediation are available in the appendix.
Problem set

1. Twenty-three horses grazed in the pasture. The rest of the horses were in the corral. If there were eighty-nine horses in all, how many horses were in the corral?

2. Three hundred seventy-five students stood silently in the hall. The other one hundred seven students in the hall were shouting and jumping up and down. Altogether, how many students were in the hall?

3. Use the numbers 22, 33, and 55 to write two addition facts and two subtraction facts.

4. Write 782 in expanded form.

5. The largest three-digit odd number is 999. What is the smallest three-digit even number?

6. Compare:

 (a) 918 \(\bigcirc \) 819
 (b) \(-7 \bigcirc -5\)

7. How many days are in 6 weeks? Count by sevens.

8. To what number is the arrow pointing?

9. \(\begin{array}{c} \$576 \\
\%128 \end{array} \)
10. \(\begin{array}{c} \$243 \\
\%578 \end{array} \)
11. \(\begin{array}{c} 186 \\
\%285 \end{array} \)
12. \(\begin{array}{c} 329 \\
\%186 \end{array} \)

13. \(\begin{array}{c} D \\
\%12 \end{array} \)
14. \(\begin{array}{c} 17 \\
\%A \end{array} \)
15. \(\begin{array}{c} 8 \\
\%B \end{array} \)
16. \(\begin{array}{c} C \\
\%7 \end{array} \)

17. \(\begin{array}{c} 25 \\

\%19 \end{array} \)
18. \(\begin{array}{c} 42 \\

\%28 \end{array} \)
19. \(\begin{array}{c} 46 \\

\%18 \end{array} \)
20. \(\begin{array}{c} 42 \\

\%16 \end{array} \)

21. \(\begin{array}{c} 68 \\

\%D \end{array} \)
22. \(\begin{array}{c} B \\

\%34 \end{array} \)
23. \(\begin{array}{c} 62 \\

\%H \end{array} \)
24. \(\begin{array}{c} L \\

\%46 \end{array} \)
25. Write the next three numbers in each counting sequence:
 (a) ..., 16, 20, 24, _____, _____, _____, ...
 (b) ..., 16, 12, 8, _____, _____, _____, ...

26. If $N - 3 = 6$, then which of these number sentences is not true?
 A. $6 + 3 = N$
 B. $3 + 6 = N$
 C. $6 - 3 = N$
 D. $N - 6 = 3$
LESSON 17
Adding Columns of Numbers with Regrouping

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Add three numbers:
a. 200 + 300 + 400 b. 240 + 200 + 100
c. 36 + 20 + 9 d. 45 + 10 + 29
e. 56 + 20 + 19 f. 24 + 39 + 10

Patterns:
Create a design of numbered circles like those in Lessons 5 and 15, but use seven circles instead of ten. Use the pattern “1, skip, skip, 2, skip, skip, 3, ...” to number the circles, starting with the circle at top. Outside each circle, write the sum of the numbers in that circle and the two circles on either side. Describe the pattern to a classmate or write a description of the pattern.

NEW CONCEPT

We have practiced solving addition problems in which we regrouped 10 ones as 1 ten. But sometimes the sum of the digits in the ones column is 20 or more. When this happens, we move a group of two, three, or more tens to the tens column.

Example 1 Add: 28 + 16 + 39 + 29

Solution We arrange the numbers vertically and then add the ones. Their sum is 32, which is 3 tens plus 2 ones. We record the 2 in the ones place and write the 3 either above or below the tens column. Then we finish adding.
Example 2 Add: 227 + 88 + 6

Solution We line up the last digits of the numbers. Then we add the digits in the ones column and get 21.

\[
\begin{array}{c}
227 \\
+ 88 \\
+ 6 \\
\hline
21 \\
\end{array}
\]

The number 21 is 2 tens plus 1 one. We record the 1 in the ones place and write the 2 in the tens column. Then we add the tens and get 12 tens.

\[
\begin{array}{c}
227 \\
+ 88 \\
+ 6 \\
\hline
121 \\
\end{array}
\]

We record the 2 in the tens place and write the 1, which is 1 hundred, in the hundreds column. Then we finish adding.

\[
\begin{array}{c}
12 \\
227 \\
+ 88 \\
+ 6 \\
\hline
321 \\
\end{array}
\]

LESSON PRACTICE

Practice set* Add:

\[
\begin{array}{cccc}
a. & 47 & b. & 28 \\
 & 29 & & 47 \\
 & 46 & + & 65 \\
+ & 95 & & + 46 \\
\hline
\end{array}
\]

c. 38

d. 438

e. 15 + 24 + 11 + 25 + 36

MIXED PRACTICE

Problem set

1. One doctor put in twenty-four stitches. A second doctor put in some more stitches. There were seventy-five stitches in all. How many stitches did the second doctor put in?

2. Four hundred seven roses were in front. Three hundred sixty-two roses were in back. How many roses were there in all?
3. Use the digits 9, 2, and 8 once each to write an even number less than 300.

4. Write 813 in expanded form. Then use words to write the number.

5. The largest two-digit even number is 98. What is the smallest two-digit odd number?

6. To what number is the arrow pointing?

7. 294
8. $\$189$
9. $\$378$
10. 109

\[
\begin{array}{ccc}
294 & \quad & 312 \\
\quad & + & \quad \\
\quad & \quad & \quad + 5 \\
\end{array}
\]

11. $14 + 28 + 35 + 16 + 227$

12. $14 - A = 7$
13. $8 + B = 14$
14. $C - 13 = 5$

\[
\begin{array}{ccc}
11 & \quad & E \\
\quad & - & \quad \\
9 & \quad & 5 \\
\end{array}
\]

15. 34
16. 48
17. D
18. Y

\[
\begin{array}{ccc}
34 & \quad & 48 \\
\quad & - & \quad \\
86 & \quad & 25 \\
\end{array}
\]

19. $+ B$
20. $- C$
21. $- 46$
22. $- 15$

Write the next three numbers in each counting sequence:

23. ..., 48, 44, 40, ____ , ____ , ____ , ...

24. ..., 12, 15, 18, ____ , ____ , ____ , ...

25. The numbers 6, 9, and 15 form a fact family. Write four addition/subtraction facts using these three numbers.

26. Nancy is thinking of two numbers whose sum is 10 and whose difference is 2. What are the two numbers?

A. 2 and 8
B. 3 and 7
C. 6 and 4
D. 2 and 10
WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:

a. 250 + 300 + 100 b. 20 + 36 + 19 c. 76 + 9 + 9

d. 64 + 9 + 10 e. 27 + 19 + 20 f. 427 + 200

Patterns:

On this hundred number chart we began circling the multiples of three. We drew an “X” on the multiples of four. Notice that the number 12 has both a circle and an X. On another chart, finish the pattern. Then shade the boxes that have numbers with both a circle and an X.

NEW CONCEPT

A **scale** is a type of number line often used for measuring. Scales are found on rulers, gauges, thermometers, speedometers, and many other instruments. To read a scale, we first determine the distance between the marks on the scale. Then we can find the values of all the marks on the scale.

We use a thermometer to measure temperature. Temperature is usually measured in degrees **Fahrenheit** (°F) or in degrees **Celsius** (°C). On many thermometers the distance between the tick marks is two degrees.

Example 1 What temperature is shown on this Fahrenheit thermometer?

Solution There are five spaces between 30° and 40° on this scale, so each space cannot equal one degree. If we try counting by twos, we find that our count matches the scale. We count up by twos from 30° and find that the temperature is 32°F. Water freezes at 32°F.
Example 2 What temperature is shown on this Celsius thermometer?

Solution Most of the world uses the Celsius scale to measure temperature. On this thermometer we see that the tick marks are also two degrees apart. If we count down by twos from zero, we find that the temperature shown is four degrees below zero, which we write as \(-4°C\). Water freezes at 0°C, so \(-4°C\) is below freezing.

Example 3 This speedometer shows speed in miles per hour (mph). How fast is the car with this speedometer traveling?

Solution By trying different counts on the scale, we find that each space equals five. If we count up by fives from 40, we see that the needle points to 55. So the car is traveling at a speed of 55 mph.

LESSON PRACTICE

Practice set What measurement is shown on each of these scales? Include correct units.

a. [Temperature scale showing Fahrenheit]

b. [Temperature scale showing Celsius]

c. [Speedometer scale showing miles per hour]
Problem set 1. Tomas ran to the fence and back in 58 seconds. If it took Tomas 21 seconds to run to the fence, how many seconds did it take him to run back from the fence?

2. Two hundred ninety-seven boys and three hundred fifteen girls attend Madison School. How many children attend Madison School? Write a number sentence for this problem.

3. Use the numbers 8, 17, and 9 to write two addition facts and two subtraction facts.

4. The tens digit is 4. The ones digit is 9. The number is between 200 and 300. What is the number?

5. What is the eighth number in this counting sequence?

4, 8, 12, 16, ...

6. To what number is the arrow pointing?

7. 8. 9. 10.

15. 16. 17. 18.

19. 20. 21. 22.
23. Write 498 in expanded form.

24. Compare:
 \((\text{Inv. 1})\)
 (a) \(423 \bigcirc 432\) \hspace{1cm} (b) \(3 \bigcirc -3\)

25. What temperature is shown on each thermometer?
 \((\text{18})\)
 (a) \(50^\circ \text{F}\) \hspace{1cm} (b) \(-10^\circ \text{C}\)

26. Which of these numbers is an odd number greater than 750?
 \((\text{10})\)
 A. 846 \hspace{1cm} B. 864 \hspace{1cm} C. 903 \hspace{1cm} D. 309
LESSON

19

Reading Time from a Clock

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:

Add a number ending in two zeros to a two-digit number:

a. 27 + 100

b. 63 + 200

c. 28 + 20 + 300

d. 36 + 9 + 200

e. 45 + 19 + 100

f. 48 + 29 + 300

g. What number should be added to each of these numbers for the total to be 10: 2, 5, 6, 3, 1?

Problem Solving:

Habib had four coins in his pocket totaling 25¢. What coins did Habib have in his pocket?

NEW CONCEPT

The scale on a clock is actually two scales in one. One scale marks hours and is usually numbered. The other scale marks minutes and seconds and is usually not numbered. We have numbered the scale for minutes and seconds outside this clock. Notice that on this scale we count by fives to go from one big mark to the next. So counting by fives can help us find the number of minutes before or after the hour.

To tell time, we read the position of the short hand on the hour scale and the position of the long hand on the minute scale. If the clock also has a hand for seconds, we can read its position on the minute scale, which is also the second scale.

To write the time of day, we write the hour followed by a colon. Then we write two digits to show the number of minutes after the hour. We use the abbreviations a.m. for the
12 hours before noon and p.m. for the 12 hours after noon. This form is referred to as digital form. Noon is written as 12:00 p.m.; midnight is 12:00 a.m.

Example 1 If it is evening, what time is shown by the clock?

Solution Since the short hand is between the 9 and the 10, we know it is after 9 p.m. and before 10 p.m. For the long hand, we count 5, 10, 15, 20 minutes after 9:00 p.m. The clock shows 9:20 p.m.

Sixty minutes is one hour, so thirty minutes is half an hour. So if the time is 7:30, we might say that the time is “half past seven.” Fifteen minutes is a quarter of an hour. At 6:15 we might say that the time is a “quarter after six.”

Example 2 Use digital form to show what time it is at a quarter to eight in the evening.

Solution A quarter to eight is 15 minutes before eight. In the evening, this time is 7:45 p.m.
Lesson 19

LESSON PRACTICE

Practice set If it is morning, what time is shown by each clock?

a. ![Clock 1]

b. ![Clock 2]

c. ![Clock 3]

d. Use digital form to show what time it is at ten minutes to nine in the evening.

e. How many hours equal a whole day?

f. How many minutes equal an hour?

g. How many seconds equal a minute?

MIXED PRACTICE

Problem set 1. On the first day Sarah sharpened fifty-one pencils. She sharpened some more pencils on the second day. She sharpened seventy-six pencils in all. How many pencils did she sharpen on the second day?

2. Twelve of the twenty-seven children in Room 9 are boys. How many girls are in Room 9?

3. If \(A + B = 9 \), then what is the other addition fact for \(A, B, \) and 9? What are the two subtraction facts for \(A, B, \) and 9?

4. Write 905 in expanded form. Then use words to write the number.

5. Use digits and symbols to write this comparison: “One hundred twenty is greater than one hundred twelve.”

6. This clock shows that it is half past four. It is afternoon. Write the time shown in digital form.

7. Water freezes at 32° on the Fahrenheit scale. At what temperature on the Celsius scale does water freeze?
23. How many quarters are equal to four dollars? Count by fours.

24. Write a number sentence for this picture:

25. Write the next three numbers in each counting sequence:
 (a) ..., 8, 16, 24, ____ , ____ , ____ , ...
 (b) ..., 8, 6, 4, ____ , ____ , ____ , ...

26. If $9 - \Delta = 4$, then which of these is not true?
 A. $9 - 4 = \Delta$
 B. $\Delta - 4 = 9$
 C. $4 + \Delta = 9$
 D. $\Delta + 4 = 9$
Rounding Numbers to the Nearest Ten • Rounding Money to the Nearest Dollar

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:

a. 56 + 400
b. 154 + 200
c. 54 + 29

d. 35 + 9 + 200
e. 48 + 19 + 200
f. 400 + 39 + 38

g. What number should be added to each of these numbers for the total to be 10: 9, 7, 5, 4, 8?

Patterns:

The multiples of six are 6, 12, 18, and so on. On a hundred number chart, shade the squares that contain a multiple of six. Which of the shaded numbers are also a multiple of five?

NEW CONCEPTS

Rounding numbers to the nearest ten

One of the sentences below uses an exact number. The other sentence uses a rounded number. Can you tell which sentence uses the rounded number?

The radio cost about $70.

The radio cost $68.47.

The first sentence uses the rounded number. Rounded numbers usually end with a zero. We often use rounded numbers in place of exact numbers because they are easy to understand and work with.

To round an exact number to the nearest ten, we choose the closest number that ends in zero. A number line can help us understand rounding. We will use the number line below to help us round 67 to the nearest ten.

We see that 67 is between 60 and 70. Since 67 is closer to 70 than it is to 60, we say that 67 is “about 70.” When we say this, we have rounded 67 to the nearest ten.
Example 1 Round 82 to the nearest ten.

Solution Rounding to the nearest ten means rounding to a number we would say when counting by tens (10, 20, 30, 40, and so on). We will use a number line marked off in tens to picture this problem.

We see that 82 is between 80 and 90. Since 82 is closer to 80 than it is to 90, we round 82 to 80.

Example 2 Round 75 to the nearest ten.

Solution Seventy-five is halfway between 70 and 80.

If the number we are rounding is halfway between round numbers, we round up to the next round number. So 75 rounds to 80.

Rounding money to the nearest dollar To round dollars and cents to the nearest dollar, we look closely at the number of cents. For example, to determine whether $7.89 is closer to $7 or to $8, we ask ourselves whether 89 cents is more than or less than half a dollar. Half a dollar is 50 cents. Since 89 cents is more than half a dollar, $7.89 is closer to $8 than $7. To round money amounts to the nearest dollar, we round up if the number of cents is 50 or more. We round down if the number of cents is less than 50.

Example 3 Round each amount of money to the nearest dollar:

(a) $6.49 (b) $12.95 (c) $19.75

Solution (a) The number of cents is less than 50. We round down to $6.

(b) The number of cents is more than 50. We round up to $13.

(c) The number of cents is more than 50. We round up to the next dollar, which is $20.
LESSON PRACTICE

Practice set Round each number to the nearest ten. For each problem, draw a number line to show your work.

a. 78 b. 43 c. 61 d. 45

Round each amount of money to the nearest dollar:

e. $14.29 f. $8.95 g. $21.45 h. $29.89

MIXED PRACTICE

Problem set 1. Martine gathered a “whole bunch” of eggs one day. She gathered twenty-one eggs on the second day. If she gathered seventy-two eggs in all, how many were from the “whole bunch”?

2. Four hundred seventy-six children stood quietly in one line. Three hundred ninety-seven children stood quietly in another line. Altogether, how many children stood quietly in line?

3. The ones digit is 5. The tens digit is 6. The number is between 600 and 700. What is the number?

4. Write 509 in expanded form. Then use words to write the number.

5. Use digits and symbols to write this comparison: “Negative twenty is less than ten.”

6. This thermometer shows the temperature on both the Fahrenheit and Celsius scales. Write the temperature shown in degrees Fahrenheit and in degrees Celsius.
7. It is a quarter after four in the afternoon. Write the time shown in digital form.

8. Round each number to the nearest ten:
 (a) 47 (b) 74

9. $476 + $285
10. $185 + $499
11. 568 + 397
12. 478 + 196

13. 17 - A
14. 14 - B
15. 13 - C
16. $35 - $28

17. 23 - 15
18. 63 - 36
19. 74 - 59
20. M + 22

22. 47 - K
23. 28 + 36
24. 49 + 28

25. Round each amount of money to the nearest dollar:
 (a) $25.67 (b) $14.42

26. Which number sentence describes this model?
 (7, 9)

 \[
 \begin{align*}
 \text{plus} & \quad \text{\begin{tabular}{c}
 \begin{tabular}{c}
 \hline
 \hline
 \hline
 \hline
 \hline
 \end{tabular}
 \end{tabular}} \\
 & \quad \begin{tabular}{c}
 \begin{tabular}{c}
 \hline
 \hline
 \hline
 \hline
 \hline
 \end{tabular}
 \end{tabular} \quad \begin{tabular}{c}
 \begin{tabular}{c}
 \hline
 \hline
 \hline
 \hline
 \hline
 \end{tabular}
 \end{tabular} \\
 & \quad \begin{tabular}{c}
 \begin{tabular}{c}
 \hline
 \hline
 \hline
 \hline
 \hline
 \end{tabular}
 \end{tabular} \quad \begin{tabular}{c}
 \begin{tabular}{c}
 \hline
 \hline
 \hline
 \hline
 \hline
 \end{tabular}
 \end{tabular} \\
 \end{align*}
 \]

 A. 307 + 703 = 1010 B. 37 + 73 = 100
 C. 37 + 73 = 110 D. 37 + 73 = 1010
Units of Length

A ruler is a tool used to measure length. In your desk you might have an **inch** ruler. Many inch rulers are one **foot** long. Twelve inches equals one foot. You might also have a yardstick in your classroom. A **yard** is three feet, which is 36 inches. A **mile** is a much larger unit of length. One mile is 5280 feet. Inches, feet, yards, and miles are units of length in the **U.S. Customary System**.

<table>
<thead>
<tr>
<th>U.S. Customary Units of Length</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td></td>
</tr>
<tr>
<td>inch in.</td>
<td>12 in. = 1 ft</td>
</tr>
<tr>
<td>foot ft</td>
<td>3 ft = 1 yd</td>
</tr>
<tr>
<td>yard yd</td>
<td>36 in. = 1 yd</td>
</tr>
<tr>
<td>mile mi</td>
<td>5280 ft = 1 mi</td>
</tr>
</tbody>
</table>

The **metric system** is the system of measurement used by most of the world and is especially important in science. The basic unit of length in the metric system is the **meter**. You might have a meterstick in your classroom.

1. Compare a yardstick and a meterstick. Which is longer?

2. Hayes ran 100 yards. Jones ran 100 meters. Who ran farther?

If you take a BIG step, you move about one meter. To get a feel for a meter, place a meterstick on the floor and practice taking a step one meter long.

3. Estimate the length of your classroom in meters by taking one-meter steps along the length of the classroom.
In your desk you might have a **centimeter** ruler. A centimeter is a small part of a meter. One hundred centimeters equals one meter (just as 100 *cents* equals one dollar).

4. How many centimeters equal one meter?

5. Compare an inch ruler and a centimeter ruler. Which is longer, an inch or a centimeter?

6. A ruler that is one foot long is about how many centimeters long?

7. Use an inch ruler to measure the length of a sheet of paper. About how many inches long is it?

8. Use a centimeter ruler to measure the length of your paper. About how many centimeters long is it?

9. Use inch and centimeter rulers to measure this picture of a pencil. The pencil is about
 (a) how many inches long?
 (b) how many centimeters long?

![Pencil](image)

10. Use your rulers to measure a dollar bill. A dollar bill is about
 (a) how many inches long?
 (b) how many centimeters long?

Centimeter rulers and metersticks sometimes have small marks between the centimeter marks. The small marks are one **millimeter** apart. A dime is about one millimeter thick. Ten millimeters equals one centimeter, and 1000 millimeters equals a meter. We will learn more about millimeters in a later lesson.
To measure long distances, we can use **kilometers**. A kilometer is 1000 meters, which is a little more than half a mile.

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>millimeter mm</td>
<td>10 mm = 1 cm</td>
</tr>
<tr>
<td>centimeter cm</td>
<td>1000 mm = 1 m</td>
</tr>
<tr>
<td>meter m</td>
<td>100 cm = 1 m</td>
</tr>
<tr>
<td>kilometer km</td>
<td>1000 m = 1 km</td>
</tr>
</tbody>
</table>

11. About how many BIG steps would a person take to walk a kilometer?

12. A mile is about 1609 meters. Which is longer, a mile or a kilometer?

13. How many millimeters equal one meter?

14. This key is about
 (a) how many inches long?
 (b) how many centimeters long?
 (c) how many millimeters long?

15. This rectangle is
 (a) how many centimeters long?
 (b) how many centimeters wide?

16. If an ant started at one corner of the rectangle above and crawled along all four sides back to the starting point, how many centimeters would it crawl?
Perimeter The distance around a shape is its perimeter. To find the perimeter of a shape, we add the lengths of all of its sides.

17. Keisha ran the perimeter of the block. How far did Keisha run?

18. What is the perimeter of this square?

19. What is the perimeter of a square with sides 10 in. long?

20. Find the perimeter of this triangle.

21. (a) What is the length of this rectangle?
(b) What is the width of this rectangle?
(c) What is the perimeter of this rectangle?

22. Farmer McDonald’s cows graze in a grassy field surrounded by a wire fence. Which best represents the perimeter of the field, the grassy field or the wire fence?

23. A glass mirror on Amanda’s wall is surrounded by a wooden frame. Which best represents the perimeter of the mirror, the glass mirror or the wooden frame?

24. Estimate the perimeter of your classroom in meters by taking one-meter steps along the edges of the classroom.
LESSON 21

Triangles, Rectangles, Squares, and Circles

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:

a. 44 + 32
 b. 57 + 20
 c. 57 + 19

d. 32 + 43 + 100
 e. 58 + 31 + 200
 f. 56 + 29 + 100

g. What number should be added to each of these numbers for the total to be 10: 7, 2, 9, 5, 6?

Patterns:
The multiples of seven are 7, 14, 21, and so on. On a hundred number chart, shade the squares that contain a multiple of seven. Which of the shaded squares contain an even number that is a multiple of five?

NEW CONCEPT

In this lesson we will practice drawing triangles, rectangles, squares, and circles.

Example 1 Draw a triangle whose sides all have the same length.

Solution You may need to practice on scratch paper to understand how to draw this triangle. A triangle has three sides, but those sides can be positioned many different ways. If you start with a “square corner,” the third side will be too long.

This side is longer than the other two sides.

square corner

A triangle whose sides are the same length looks like this:
Example 2 Draw a rectangle whose sides all have the same length.

Solution A rectangle has four sides and square corners. It does not have to be longer than it is wide. A rectangle whose sides are the same length looks like this:

This figure looks like a square because it is a square. It is also a rectangle. A square is a special kind of rectangle.

Example 3 Draw a rectangle that is 3 cm long and 2 cm wide.

Solution We use a centimeter ruler to help us make the drawing.

To draw circles, we can use a tool called a compass. Below we show two types of compasses:

There are two points on a compass: a pivot point and a pencil point. We swing the pencil point around the pivot point to draw a circle. The distance between the two points is the radius of the circle.

The radius of a circle is the distance from the center of the circle to the circle. The plural of radius is radii.
Example 4 Draw a circle with a radius of 2 cm.

Solution Set the compass so that the radius is 2 cm. Place the pivot point; then swing the pencil point of the compass around it to draw the circle.

The diameter of a circle is the distance across the circle through the center. As the diagram below illustrates, the diameter of a circle equals two radii.

Example 5 If the radius of a circle is 2 cm, then what is the diameter of the circle?

Solution Since the diameter of a circle equals two radii, the diameter of a circle with a 2-cm radius is 4 cm.

LESSON PRACTICE

Practice set a. Draw a triangle with two sides that are the same length.

b. Draw a rectangle that is about twice as long as it is wide.

c. Use a compass to draw a circle with a radius of 1 inch.

d. What is the diameter of a circle that has a 3-cm radius?

e. What is another name for a rectangle whose length is equal to its width?
1. Hiroshi had four hundred seventeen marbles. Harry had two hundred twenty-two marbles. How many marbles did Hiroshi and Harry have in all?

2. Tisha put forty jacks into a pile. After Jane added all of her jacks there were seventy-two jacks in the pile. How many jacks did Jane put in?

3. The ones digit is 5. The number is greater than 640 and less than 650. What is the number?

4. Write seven hundred fifty-three in expanded form.

5. If \(x + y = 10 \), then what is the other addition fact for \(x, y, \) and 10? What are the two subtraction facts for \(x, y, \) and 10?

6. The needle is pointing to what number on this scale?

7. Use a centimeter ruler to measure this rectangle.
 (a) What is the length?
 (b) What is the width?
 (c) What is the perimeter?

8. \(493 + 278 \)

9. \($486 + $378 \)

10. \($524 + $109 \)

11. Draw a triangle. Make each side 2 cm long. What is the perimeter of the triangle?

12. Draw a square with sides 2 inches long. What is the perimeter of the square?
13. 17
14. 45
15. 15
16. 62
\[\frac{17}{A} - \frac{29}{B} \]
\[- \frac{9}{6} \]
17. 24
18. 14
19. Y
20. 75
\[\frac{17}{D} - \frac{23}{B} \]
\[+ \frac{2}{53} - \frac{45}{45} \]
21. 46
22. 14
23. 14
24. 15
\[\frac{17}{39} + \frac{23}{38} + \frac{64}{64} + \frac{99}{99} \]
\[+ \frac{39}{36} + \frac{38}{36} + \frac{99}{99} \]

25. Write the next three numbers in each counting sequence:
(a) ..., 28, 35, 42, _____, _____, _____, ...
(b) ..., 40, 30, 20, _____, _____, _____, ...

26. Alba drew a circle with a radius of 4 cm. What was the diameter of the circle?
 A. 8 in. B. 2 in. C. 8 cm D. 2 cm
LESSON 22

Naming Fractions • Adding Dollars and Cents

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:

a. 63 + 21 b. 45 + 23 c. 65 + 30

d. 48 + 19 + 200 e. 36 + 29 + 30 f. 130 + 200 + 300

g. What number should be added to each of these numbers for the total to be 10: 8, 4, 3, 9, 5?

Problem Solving:

The hour hand moves around the face of a clock once in twelve hours. How many times does the hour hand move around the face of the clock in a week?

NEW CONCEPTS

Naming fractions

Part of a whole can be named with a fraction. A fraction is written with two numbers. The bottom number of a fraction is called the denominator. The denominator tells how many equal parts are in the whole. The top number of a fraction is called the numerator. The numerator tells how many of the parts are being counted. When naming a fraction, we name the numerator first; then we name the denominator using its ordinal number.\(^*\) Some fractions and their names are shown below.

\[
\begin{align*}
\frac{1}{2} & \text{ one half} & \frac{3}{5} & \text{ three fifths} \\
\frac{1}{3} & \text{ one third} & \frac{5}{6} & \text{ five sixths} \\
\frac{2}{3} & \text{ two thirds} & \frac{7}{8} & \text{ seven eighths} \\
\frac{1}{4} & \text{ one fourth} & \frac{1}{10} & \text{ one tenth}
\end{align*}
\]

\(^*\)Exception: We use the word half (instead of second) for a denominator of 2. Also, we may choose to use the word quarter to name a denominator of 4.
Example 1 What fraction of the circle is shaded?

Solution There are four equal parts and three are shaded. Therefore, the fraction of the circle that is shaded is three fourths, which we write as

\[\frac{3}{4} \]

Example 2 A dime is what fraction of a dollar?

Solution Ten dimes equal one dollar, so one dime is \(\frac{1}{10} \) of a dollar.

Example 3 Three quarters are what fraction of a dollar?

Solution Four quarters equal a dollar, so each quarter is \(\frac{1}{4} \) of a dollar. Three quarters are \(\frac{3}{4} \) of a dollar.

Adding dollars and cents We add dollars and cents the same way we add whole numbers. The dot, called a decimal point, separates dollars from cents. To add dollars to dollars and cents to cents, we align the decimal points. We remember to write the dollar sign and the decimal point in the sum.

Example 4 Add:
\[
\begin{array}{c}
3.56 \\
+ 2.75 \\
\end{array}
\]

Solution First we add the pennies, then we add the dimes, and then we add the dollars. Since ten pennies equal a dime and ten dimes equal a dollar, we regroup when the total in any column is ten or more.

\[
\begin{array}{c}
\text{Add pennies.} \\
\text{Add dimes.} \\
\text{Add dollars.} \\
3.56 \\
+ 2.75 \\
\hline
1.1 \\
\hline
6.31 \\
\end{array}
\]
LESSON PRACTICE

Practice set What fraction of each shape is shaded?

a.

b.

c.

d.

e. A quarter is what fraction of a dollar?

f. A nickel is what fraction of a dollar?

g. Three dimes are what fraction of a dollar?

Add:

h. $2.75

+ $2.75

i. $3.65

+ $4.28

MIXED PRACTICE

Problem set 1. The first four odd numbers are 1, 3, 5, and 7. What is their sum?

2. James was 49 inches tall at the beginning of summer. He grew 2 inches over the summer. How tall was James at the end of summer?

3. Use the digits 1, 2, and 3 once each to write an odd number less than 200.

Write the next three numbers in each counting sequence:

4. ..., 80, 72, 64, _____, _____, _____, ...

5. ..., 60, 54, 48, _____, _____, _____, ...

6. Draw a square with sides 3 cm long. What is the perimeter of the square?

7. A yardstick is how many feet long?
8. What is the place value of the 9 in 891?

9. Write 106 in expanded form. Then use words to write the number.

10. Use the numbers 6, 9, and 15 to write two addition facts and two subtraction facts.

11. Use digits and symbols to write that eighteen is greater than negative twenty.

12. (a) Round 28 to the nearest ten.
 (b) Round $5.95 to the nearest dollar.

13. A bicycle is about how many meters long?

14. The needle is pointing to what number on this scale?

15. Draw a circle that has a diameter of 2 centimeters. What is the radius of the circle?

16. What fraction of this rectangle is shaded?

17. The door was two meters tall. Two meters is how many centimeters?

18. 51 – 43

19. 70 – 44

20. 37 – 9

21. $8.79 + $0.64

22. $5.75 + $2.75

23. \(\frac{N}{17} + \frac{13}{17} \)

24. \(\frac{X}{27} - \frac{42}{27} \)

25. \(\frac{37}{P} \)

26. A number sentence such as 20 + \(N \) = 60 can be called an equation. If this equation is true, then which of the following equations is not true?

 A. 60 – 20 = \(N \)
 B. 60 – \(N \) = 20
 C. \(N \) – 20 = 60
 D. \(N \) + 20 = 60
LESSON
23
Lines, Segments, Rays, and Angles

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Add hundreds, then tens, and then ones:

- a. 320 + 256
- b. 645 + 32
- c. 145 + 250
- d. 632 + 55
- e. 86 + 210
- f. 360 + 25

- g. What number should be added to each of these numbers for the total to be 10: 2, 6, 7, 1, 5?

Patterns:
On a hundred number chart, shade the squares that contain a multiple of 9. Then write the numbers in the shaded squares from 9 to 90 in a column. What patterns can you find in the column of numbers?

NEW CONCEPT

A line goes on and on. When we draw a line, we include an arrowhead on each end to show that the line continues in both directions.

Part of a line is a line segment, or just segment. When we draw a segment, we do not include arrowheads. We can, however, use dots to show the endpoints of the segment.

A ray is sometimes called a half line. A ray begins at a point and continues in one direction without end. When we draw a ray, we include an arrowhead on one end.
Example 1 Write “line,” “segment,” or “ray” to describe each of these physical models:
(a) a beam of starlight
(b) a ruler

Solution (a) A beam of starlight begins at a “point,” the star, and continues across space. This is an example of a ray.
(b) A ruler has two endpoints, so it is best described as an example of a segment.

Lines and segments that go in the same direction and stay the same distance apart are parallel.

When lines or segments cross, we say they intersect.

Intersecting lines or segments that form “square corners” are perpendicular.

Angles are formed where lines or segments intersect or where two or more rays or segments begin. An angle has a vertex and two sides. The vertex is the point where the two sides meet (the “corner”).
An angle is named by how “open” it is. An angle like the corner of a square is called a right angle.

\[
\begin{array}{c}
\text{Square} \\
\text{Right angles}
\end{array}
\]

To show that an angle is a right angle, we can draw a small square in the corner of the right angle.

\[
\text{This mark shows that the angle is a right angle.}
\]

Angles that are smaller than right angles are called acute angles. Some people remember this by saying, “a cute little angle.” Angles that are larger than right angles are obtuse angles.

\[
\begin{array}{c}
\text{Acute angle} \\
\text{Obtuse angle}
\end{array}
\]

Example 2 Describe each of these figures as an acute, obtuse, or right angle.

(a) \hspace{1cm} (b) \hspace{1cm} (c)

\[
\begin{array}{c}
\text{(a) The angle is smaller than a right angle, so it is an acute angle.} \\
\text{(b) The angle makes a square corner, so it is a right angle.} \\
\text{(c) The angle is larger than a right angle, so it is an obtuse angle.}
\end{array}
\]

The figure in the following example has four angles. We can name each angle by the letter at the vertex of the angle. The four angles in the figure are angle Q, angle R, angle S, and angle T.

Example 3 Describe each of the four angles in this figure as acute, right, or obtuse.

\[
\text{Solution} \hspace{1cm} \text{Angle Q is acute. Angle R is obtuse. Angles S and T are right angles.}
\]
Example 4 Draw a triangle that has one right angle.

Solution We begin by drawing two line segments that form a right angle. Then we draw the third side.

Notice that the other two angles are acute angles.

Activity: Real-World Segments and Angles

1. Look for examples of the following figures in your classroom. List the examples on the board.
 (a) parallel segments
 (b) perpendicular segments
 (c) right angles
 (d) acute angles
 (e) obtuse angles

2. Bend your arm so that the angle at the elbow is an acute angle, then a right angle, then an obtuse angle. Bend your leg so that the angle at the knee is an acute angle, then a right angle, then an obtuse angle.

LESSON PRACTICE

Practice set

a. Draw two segments that intersect but are not perpendicular.

b. Draw two lines that are perpendicular.

c. Draw a ray.

d. Are the rails of a train track parallel or perpendicular?

e. A triangle has how many angles?

f. Which of these angles does not look like a right angle?

A.

B.

C.

Problem set

1. Twenty-eight children were in the first line. Forty-two children were in the second line. Altogether, how many children were in both lines?

2. Tina knew that there were 28 books in the two stacks. Tina counted 12 books in the first stack. Then she figured out how many books were in the second stack. How many books were in the second stack?

3. Use the digits 1, 2, and 3 once each to write an odd number greater than 300.

4. Write the next three numbers in each counting sequence:
 (a) ..., 40, 36, 32, ____, ____, ____...
 (b) ..., 30, 27, 24, ____, ____, ____...

5. Use the numbers 15, 16, and 31 to write two addition facts and two subtraction facts.

6. Use digits and a comparison symbol to write that six hundred thirty-eight is less than six hundred eighty-three.

7. (a) Round 92 to the nearest ten.
 (b) Round $19.67 to the nearest dollar.

8. The diameter of a nickel is 2 centimeters. If 10 nickels are placed in a row, how long will the row be? Count by twos.

9. Use a centimeter ruler to measure this rectangle:
 (a) What is the length?
 (b) What is the width?
 (c) What is the perimeter?

10. Which of these shapes has four right angles?
 (A)
 (B)
 (C)

11. What fraction of this triangle is shaded?

12. It is afternoon. What time is shown on this clock?

13. \[\frac{83}{15} - \frac{27}{15} \]
14. \[\frac{42}{15} - \frac{27}{15} \]
15. \[\frac{72}{15} - \frac{36}{15} \]
16. \[\frac{\$4.28}{22} + \frac{\$1.96}{22} \]

17. \[\frac{\$4.36}{22} + \frac{\$2.95}{14} \]
18. \[\frac{57}{88} + \frac{K}{16} \]
19. \[\frac{67}{16} - \frac{B}{16} \]
20. \[\frac{K}{22} - \frac{22}{22} \]

21. \[\frac{42}{15} - \frac{7}{15} \]
22. \[\frac{55}{15} - \frac{48}{15} \]
23. \[\frac{31}{14} - \frac{20}{14} \]

24. \[\frac{25}{17} + \frac{25}{17} + \frac{25}{17} + \frac{25}{17} \]

25. (a) How many nickels equal one dollar?
(b) One nickel is what fraction of a dollar?
(c) Seven nickels are what fraction of a dollar?

26. If \[\frac{26}{6} + \frac{M}{6} = \frac{63}{6} \], then which of these equations is not true?
 A. \[\frac{M}{6} + \frac{26}{6} = \frac{63}{6} \]
 B. \[\frac{M}{6} - \frac{63}{6} = \frac{26}{6} \]
 C. \[\frac{63}{6} - \frac{M}{6} = \frac{26}{6} \]
 D. \[\frac{63}{6} - \frac{26}{6} = \frac{M}{6} \]

27. Which of these figures illustrates a ray?
 A. \[\text{--} \]
 B. \[\text{•---•} \]
 C. \[\text{•--•} \]
LESSON
24
More About Missing Numbers in Addition and Subtraction

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Add hundreds, then tens, and then ones:

a. 365 + 321
b. 650 + 45
c. 40 + 300 + 25

d. 500 + 40 + 16
e. 300 + 50 + 12
f. 400 + 80 + 11

g. Seven can be split into 3 + 4. If seven is split into 2 + □, what number is represented by □?

Problem Solving:
The pair of numbers 1 and 8 have the sum of 9. List three more pairs of counting numbers that have a sum of 9.

NEW CONCEPT

We have seen that the three numbers in an addition or subtraction fact form three other facts as well. If we know that \(N + 5 = 14 \), then we know these four facts:

\[
\begin{align*}
N & \quad 5 & \quad 14 & \quad 14 \\
+ & \quad 5 & \quad + & \quad N & \quad - & \quad N & \quad - & \quad 5 \\
14 & \quad 14 & \quad 5 & \quad N
\end{align*}
\]

Notice that the last of these facts, \(14 - 5 = N \), shows us how to find \(N \). We subtract 5 from 14 to find that \(N \) equals 9.

Example 1
Write another addition fact and two subtraction facts using the numbers in this equation:

\[36 + M = 54 \]

Which fact shows how to find \(M \)?

Solution
We arrange the numbers to write three facts. Notice that the sum, 54, becomes the first number of both subtraction facts.

\[M + 36 = 54 \quad 54 - M = 36 \quad 54 - 36 = M \]

The fact that shows how to find \(M \) is

\[54 - 36 = M \]
Example 2 Write another subtraction fact and two addition facts using the numbers in this equation:

\[72 - W = 47 \]

Which fact shows how to find \(W \)?

Solution Notice that the first number of a subtraction fact remains the first number of the second subtraction fact.

\[72 - 47 = W \]

Also notice that the first number of a subtraction fact is the sum when the numbers are arranged to form an addition fact.

\[47 + W = 72 \quad W + 47 = 72 \]

The fact that shows how to find \(W \) is

\[72 - 47 = W \]

Example 3 Find the missing number: \(R + 36 = 54 \)

Solution We can form another addition fact and two subtraction facts using these numbers.

\[36 + R = 54 \quad 54 - R = 36 \quad 54 - 36 = R \]

The last fact, \(54 - 36 = R \), shows us how to find \(R \). We subtract 36 from 54 and get 18.

Example 4 Find the missing number: \(T - 29 = 57 \)

Solution We can write the first number of a subtraction equation as the sum of an addition equation.

\[57 + 29 = T \]

Thus, \(T \) equals 86.

LESSON PRACTICE

Practice set Find each missing number:

a. \(23 + M = 42 \)
b. \(Q + 17 = 45 \)

c. \(53 - W = 28 \)
d. \(N - 26 = 68 \)

e. \(36 + Y = 63 \)
f. \(62 - A = 26 \)
Problem set

1. Rafael placed two 1-foot rulers end to end. What was the total length of the two rulers in inches?

2. There were 47 apples in the big tree. There was a total of 82 apples in the big tree and in the little tree. How many apples were in the little tree?

3. All the students lined up in two equal rows. Which could not be the total number of students?

 A. 36
 B. 45
 C. 60

4. Find the missing numbers in this counting sequence:

 ..., 9, 18, ____ , _____, 45, ____ , ...

5. Find the sixth number in this counting sequence:

 7, 14, 21, ...

6. Compare: 15 – 9 □ 13 – 8

7. (a) Round 77 to the nearest ten.
 (b) Round $29.39 to the nearest dollar.

8. A professional basketball player might be about how many meters tall?

9. It is morning. What time is shown on this clock?

10. Which street is parallel to Elm?

11. (a) How many dimes equal one dollar?
 (b) One dime is what fraction of a dollar?
 (c) Nine dimes are what fraction of a dollar?
12. Draw a rectangle that is 5 centimeters long and 2 centimeters wide. What is the perimeter?

13. Name each type of angle shown below.
 (a) \[\hline \] (b) \[\hline \] (c) \[\hline \]

14. \[31 - 14 = \] (15)
15. \[468 + 247 = \] (13)
16. \[57 - 37 = \] (14)
17. \[4.97 + 2.58 = \] (22)

18. \[36 - C = 19 \] (24)
19. \[B + 65 = 82 \] (24)
20. \[87 + D = 93 \] (24)
21. \[N - 32 = 19 \] (24)
22. \[48 - 28 = \] (14)
23. \[41 - 32 = \] (15)
24. \[76 - 58 = \] (15)
25. \[416 + 35 + 27 + 43 + 5 = \] (17)

26. Which point on this number line could represent \(-3\)?
 (Inv. 1)
 \[w \quad x \quad y \quad z \]
 A. point w B. point x C. point y D. point z

27. Describe how a segment is different from a line. (23)
LESSON 25

Subtraction Stories

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Add hundreds, then tens, and then ones:

a. 340 + 50 + 200
b. 200 + 50 + 432
c. 560 + 200 + 25

Review:

d. 56 + 19 + 200
e. 48 + 39 + 100
f. 36 + 9

g. Complete each split: 6 = 2 + __
 6 = 3 + __

Problem Solving:
If the sun rose at 5:00 a.m. and set at 7:00 p.m., how many hours of sunlight were there?

NEW CONCEPT

We have practiced “some and some more” story problems. “Some and some more” stories have an addition pattern.

In this lesson we will begin practicing story problems that have a subtraction pattern. One type of story with a subtraction pattern is a “some went away” story. Read this “some went away” story:

John had 7 marbles. Then he lost 3 marbles.
He has 4 marbles left.

We can write the information from this story in a subtraction pattern like this:

Pattern: Some – Some went away = what is left

Problem: 7 marbles – 3 marbles = 4 marbles

We can also write the pattern sideways.

Pattern: Some – some went away = what is left

Problem: 7 marbles – 3 marbles = 4 marbles
In a “some went away” story there are three numbers. Any one of the numbers could be missing. We write the numbers in a subtraction pattern and then find the missing number. A diagram may help us understand the action in a “some went away” story.

Example 1 Jimmy had some marbles. Then he lost 15 marbles. Now he has 22 marbles left. How many marbles did Jimmy have in the beginning?

Solution Jimmy lost some marbles. This story has a subtraction pattern. We are told how many marbles “went away” and how many marbles are left. To find how many marbles Jimmy had in the beginning, we write the numbers in a subtraction pattern and use a letter for the missing number.

\[
\begin{array}{ccc}
\text{Pattern} & \text{Problem} \\
\text{Some} & M \text{ marbles} \\
– \text{ Some went away} & – 15 \text{ marbles} \\
\text{What is left} & 22 \text{ marbles}
\end{array}
\]

We can find the missing number in this subtraction problem by adding.

\[
\begin{align*}
22 \text{ marbles} \\
+ 15 \text{ marbles} \\
\hline
37 \text{ marbles}
\end{align*}
\]

Jimmy had 37 marbles in the beginning. Now we check the answer.

\[
\begin{align*}
37 \text{ marbles} \\
– 15 \text{ marbles} \\
\hline
22 \text{ marbles} \text{ check}
\end{align*}
\]

Example 2 Celia had 42 marbles. She lost some marbles. She has 29 marbles left. How many marbles did Celia lose?
Solution Celia lost some marbles. This story has a subtraction pattern, and we want to find the number that went away. We write the numbers in the pattern.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some</td>
<td>42 marbles</td>
</tr>
<tr>
<td>– Some went away</td>
<td>– M marbles</td>
</tr>
<tr>
<td>What is left</td>
<td>29 marbles</td>
</tr>
</tbody>
</table>

To find the missing number, we subtract.

\[
\begin{array}{c}
42 \\
- 29 \\
\hline
13
\end{array}
\]

We find that Celia lost **13 marbles**. Now let’s see whether 13 marbles makes the pattern correct.

Example 3 Fatima had 65 marbles. Then she lost 13 marbles. How many marbles does Fatima have left?

Solution Again we have a subtraction story. We write the numbers in a subtraction pattern and then find the missing number. This time, we practice writing the pattern sideways.

Pattern: Some – some went away = what is left

Problem: 65 marbles – 13 marbles = M marbles

To find the missing number, we simply subtract.

\[
\begin{array}{c}
65 \\
- 13 \\
\hline
52
\end{array}
\]

We find that Fatima has **52 marbles** left.

LEsson Practice

Practice set For each problem, write a subtraction pattern. Then answer the question.

a. Marko had 42 marbles. Then he lost some marbles. Now he has 26 marbles. How many marbles did Marko lose?

b. Tamika lost 42 marbles. Now she has 26 marbles. How many marbles did Tamika have in the beginning?

c. Barbara had 75 cents. Then she spent 27 cents. How many cents does Barbara have now?
MIXED PRACTICE

Problem set

1. Micky had 75 rocks. Then she lost some rocks. Now she has 27 rocks. How many rocks did Micky lose? Write a subtraction pattern and solve the problem.

2. Sixty-three birds sat in the tree. Then fourteen birds flew away. How many birds remained in the tree? Write a subtraction pattern and solve the problem.

3. There were many cats in the alley at noon. Seventy-five cats ran away. Forty-seven cats remained. How many cats were in the alley at noon? Write a subtraction pattern and solve the problem.

4. There are 12 months in a whole year. How many months are in half of a year?

5. Find the missing numbers in each counting sequence:
 (a) …, 5, 10, ____, ____, 25, ____, …
 (b) …, 5, 0, ____, ____, –15, ____, …

6. Use digits and a comparison symbol to write that seven hundred sixty-two is less than eight hundred twenty-six.

7. (a) Round 78 to the nearest ten.
 (b) Round $7.80 to the nearest dollar.

8. If the diameter of a wheel on Joshua’s bike is 20 inches, then what is the radius of the wheel?

9. It is afternoon. What time is shown on this clock?

10. Which street is perpendicular to Elm?
11. What fraction of this shape is shaded?

[Diagram of a shape with shaded and unshaded parts]

12. Draw a square whose sides are 4 cm long. What is the perimeter of the square?

13. To what number is the arrow pointing?

(Inv. 1)

14. 15. 16. 17.

18. 19. 20. 21.

22. 42 – 37

23. 52 – 22

24. 73 – 59

25. 900 + 90 + 9

26. Which of these is not equivalent to one meter?

A. 1000 mm B. 100 cm C. 1000 km

(Inv. 2)

27. Describe how a ray is different from a segment.

(Inv. 2, 21)
LESSON

26 Drawing Pictures of Fractions

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Add from the left and then regroup ones. For example, $35 + 26$ is 50 plus 11, which is 61.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>55</td>
<td>b.</td>
<td>36</td>
<td>c.</td>
<td>48</td>
</tr>
<tr>
<td>+ 25</td>
<td>+ 26</td>
<td>+ 22</td>
<td>+ 45</td>
<td>+ 145</td>
<td>+ 326</td>
</tr>
</tbody>
</table>

g. Complete each split: $8 = 1 + \Box$
$8 = 3 + \Box$

Problem Solving:

Jennifer has three coins in her left pocket that total 65¢. What coins does Jennifer have in her left pocket?

NEW CONCEPT

We can understand fractions better if we learn to draw pictures that represent fractions.

Example 1 Draw a rectangle and shade two thirds of it.

Solution On the left, we draw a rectangle. Then we divide the rectangle into three equal parts. As a final step, we shade any two of the equal parts.

```
Rectangle ➔ 3 equal parts ➔ 2 parts shaded
```

There are other ways to divide the rectangle into three equal parts. Here is another way we could shade two thirds of the rectangle:

```
Rectangle ➔ 3 equal parts ➔ 2 parts shaded
```
Example 2 Draw a circle and shade one fourth of it.

Solution First we draw a circle. Then we divide the circle into four equal parts. Then we shade any one of the parts.

LESSON PRACTICE

Practice set

a. Draw a square and shade one half of it.

b. Draw a rectangle and shade one third of it.

c. Draw a circle and shade three fourths of it.

d. Draw a circle and shade two thirds of it.

e. Is one half of this circle shaded? Why or why not?

MIXED PRACTICE

Problem set

1. Mary had 42 pebbles. She threw some into the lake. Then she had 27 pebbles left. How many pebbles did Mary throw into the lake? Write a subtraction pattern and solve the problem.

2. Demosthenes had a bag of pebbles when the sun came up. He put 17 pebbles in his mouth. Then there were 46 pebbles left in the bag. How many pebbles were in the bag when the sun came up? Write a subtraction pattern and solve the problem.

3. Franklin saw one hundred twelve stars. Eleanor looked the other way and saw some more stars. If they saw three hundred seventeen stars in all, how many did Eleanor see? Write an addition pattern and solve the problem.
4. Use the digits 4, 5, and 6 once each to write an even number less than 500.

5. Draw a square and shade three fourths of it.

6. What is the perimeter of this triangle?

7. Use digits and symbols to show that negative twenty is less than negative twelve.

8. (a) Round 19 to the nearest ten.
 (b) Round $10.90 to the nearest dollar.

9. One meter equals how many centimeters?

10. It is before noon. What time is shown on this clock?

11. Which street makes a right angle with Oak?

12. What fraction of this figure is shaded?

13. This scale shows weight in pounds. What number of pounds is the needle pointing to?
14. \(Y + 63 \) \(\frac{81}{24} + 63 \) \(\frac{15}{13} \) \(\frac{16}{15} \) \(\frac{17}{22} \) \(\frac{18}{22} \) $486 + $277 \(\frac{19}{22} + $39 \) \(\frac{20}{22} + $2.38 \) \(\frac{21}{22} \)

15. \(N + 42 = 71 \) \(\frac{22}{24} \) \(\frac{23}{26} \) \(\frac{24}{26} \) \(\frac{25}{17} \) \(\frac{26}{17} \) \(\frac{27}{26} \) \(\frac{28}{26} \) \(\frac{29}{26} \)

16. \(87 - N = 65 \) \(\frac{20}{24} \) \(\frac{21}{24} \) \(\frac{22}{24} \) \(\frac{23}{24} \) \(\frac{24}{24} \) \(\frac{25}{26} \) \(\frac{26}{26} \) \(\frac{27}{26} \)

17. \(27 + C = 48 \) \(\frac{21}{24} \) \(\frac{22}{24} \) \(\frac{23}{24} \) \(\frac{24}{24} \) \(\frac{25}{26} \) \(\frac{26}{26} \) \(\frac{27}{26} \)

18. \(77 - 37 \) \(\frac{22}{14} \) \(\frac{23}{14} \) \(\frac{24}{14} \) \(\frac{25}{17} \) \(\frac{26}{17} \) \(\frac{27}{23} \) \(\frac{28}{23} \) \(\frac{29}{23} \)

19. \(41 - 19 \) \(\frac{24}{15} \) \(\frac{25}{15} \) \(\frac{26}{15} \) \(\frac{27}{23} \) \(\frac{28}{23} \) \(\frac{29}{23} \)

20. \(4 + 7 + 15 + 21 + 5 + 4 + 3 \) \(\frac{25}{17} \) \(\frac{26}{17} \) \(\frac{27}{23} \) \(\frac{28}{23} \) \(\frac{29}{23} \)

21. \(\frac{1}{2} \) not shaded?

22. Is the largest angle of this triangle acute, right, or obtuse?
Multiplication as Repeated Addition • Elapsed Time

NEW CONCEPTS

Suppose we want to find the total number of dots shown on these four dot cubes:

One way we can find the total number of dots is to count the dots one by one. Another way is to recognize that there are 5 dots in each group and that there are four groups. We can find the answer by adding four 5’s.

\[5 + 5 + 5 + 5 = 20 \]

We can also use multiplication to show that we want to add 5 four times.

\[4 \times 5 = 20 \quad \text{or} \quad \frac{5 \times 4}{20} \]

If we find the answer this way, we are multiplying. We call the \(\times \) a multiplication sign. We read \(4 \times 5 \) as “four times five.”
Example 1 Change this addition problem to a multiplication problem:

\[6 + 6 + 6 + 6 + 6 \]

Solution We see five 6’s. We can change this addition problem to a multiplication problem by writing either

\[5 \times 6 \quad \text{or} \quad 6 \times 5 \]

Elapsed time The amount of time between two different clock times is called *elapsed time*. We can count forward or backward on a clock to solve elapsed-time problems.

Example 2 If it is afternoon, what time will it be in 3 hours and 20 minutes?

Solution First we count forward on the clock face 20 minutes. From that point, we count forward 3 hours.

Step 1: Counting forward 20 minutes from 1:45 p.m. makes it 2:05 p.m.

Step 2: Counting forward 3 hours from 2:05 p.m. makes it 5:05 p.m.

Example 3 If it is afternoon, what time was it 4 hours and 25 minutes ago?

Solution First we count back the number of minutes. Then we count back the number of hours.

Step 1: Counting back 25 minutes from 1:15 p.m. makes it 12:50 p.m.

Step 2: Counting back 4 hours from 12:50 p.m. makes it 8:50 a.m.

LESSON PRACTICE

Practice set Change each addition problem to a multiplication problem:

- **a.** \[3 + 3 + 3 + 3 \]
- **b.** \[9 + 9 + 9 \]
- **c.** \[7 + 7 + 7 + 7 + 7 \]
- **d.** \[5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 \]
Use the clock to answer problems e and f.

e. If it is morning, what time will it be in 2 hours and 25 minutes?

f. If it is morning, what time was it 6 hours and 30 minutes ago?

MIXED PRACTICE

Problem set

1. Just before high noon Adriana saw seventy-eight kittens playing in the field. At high noon she saw only forty-two kittens playing in the field. How many kittens had left the field by high noon? Write a subtraction pattern and solve the problem.

2. If each side of a square floor tile is one foot long, then
 (a) each side is how many inches long?
 (b) the perimeter of the tile is how many inches?

3. List the even numbers between 31 and 39.

Find the next three numbers in each counting sequence:

4. ..., 12, 15, 18, _____, _____, _____, ...

5. ..., 12, 24, 36, _____, _____, _____, ...

6. Write 265 in expanded form.

7. Use words to write –19.

8. (a) Round 63 to the nearest ten.
 (b) Round $6.30 to the nearest dollar.

9. Compare:
 (a) 392 \(\bigcirc \) 329
 (b) \(-15 \bigcirc -20\)

10. To what number is the arrow pointing?

11. Draw a square with sides 2 centimeters long. Then shade one fourth of the square.

12. What fraction of this figure is shaded?

13. It is afternoon. What time will it be 3 hours from now?

14. 67 $15. 483$ $16. 71$ $17. $5.88
\[\begin{array}{c}
- 29 \\
+ 378 \\
- 39 \\
+ 2.39 \\
\end{array}\]

\[\begin{array}{c}
+ 19 \\
+ F \\
- R \\
\end{array}\]
\[\begin{array}{c}
36 \\
87 \\
67 \\
27 \\
\end{array}\]

24. Change this addition problem to a multiplication problem:
\[9 + 9 + 9 + 9\]

25. (a) How many pennies equal one dollar?
(b) A penny is what fraction of a dollar?
(c) Eleven pennies are what fraction of a dollar?

26. If $\square = 3$ and $\Delta = 4$, then what does $\square + \Delta + \square$ equal?
A. 343 B. 7 C. 10 D. 11

27. Draw a dot on your paper to represent a point, and from that point draw two perpendicular rays.
Lesson 28

LESSON 28

Multiplication Table

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:

a. 54 + 36 b. 54 + 19 c. 54 + 120

d. 350 + 30 + 200 e. 210 + 25 + 35 f. 48 + 29

g. Complete each split: 5 = 1 + □ 5 = 3 + □

Problem Solving:

At 12:00 the hands of the clock point in the same direction. At 6:00 the hands point in opposite directions. At what hours do the hands of a clock form right angles?

NEW CONCEPT

Here we show sequences for counting by ones and twos:

Ones: 1 2 3 4 5 6 7 8 9 10 11 12

Twos: 2 4 6 8 10 12 14 16 18 20 22 24

These sequences—and those for threes and fours and so on through twelves—appear in this multiplication table:

<table>
<thead>
<tr>
<th>Multiplication Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1 0 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>2 0 2 4 6 8 10 12 14 16 18 20 22 24</td>
</tr>
<tr>
<td>3 0 3 6 9 12 15 18 21 24 27 30 33 36</td>
</tr>
<tr>
<td>4 0 4 8 12 16 20 24 28 32 36 40 44 48</td>
</tr>
<tr>
<td>5 0 5 10 15 20 25 30 35 40 45 50 55 60</td>
</tr>
<tr>
<td>6 0 6 12 18 24 30 36 42 48 54 60 66 72</td>
</tr>
<tr>
<td>7 0 7 14 21 28 35 42 49 56 63 70 77 84</td>
</tr>
<tr>
<td>8 0 8 16 24 32 40 48 56 64 72 80 88 96</td>
</tr>
<tr>
<td>9 0 9 18 27 36 45 54 63 72 81 90 99 108</td>
</tr>
<tr>
<td>10 0 10 20 30 40 50 60 70 80 90 100 110 120</td>
</tr>
<tr>
<td>11 0 11 22 33 44 55 66 77 88 99 110 121 132</td>
</tr>
<tr>
<td>12 0 12 24 36 48 60 72 84 96 108 120 132 144</td>
</tr>
</tbody>
</table>
From a multiplication table we can find the answer to problems such as 3×4 by using rows and columns. Rows run left to right, and columns run top to bottom. We start by finding the row that begins with 3 and the column that begins with 4. Then we look for the number where the row and column meet.

Each of the two numbers multiplied is called a **factor**. The answer to a multiplication problem is called a **product**. In this problem, 3 and 4 are factors, and 12 is the product. Now look at the row that begins with 4 and the column that begins with 3. We see that the product of 4 and 3 is also 12. Changing the order of factors does not change the product. This is true for any two numbers that are multiplied and is called the **commutative property of multiplication**.

Here are two more properties of multiplication we can see in the multiplication table. Notice that the product of zero and any number is zero. This is called the **property of zero for multiplication**. Also notice that the product of 1 and any other factor is the other factor. This is called the **identity property of multiplication**.
The three properties we have looked at are summarized in this table. The letters \(M\) and \(N\) can be any two numbers. Later, we will learn about two other properties of multiplication.

<table>
<thead>
<tr>
<th>Properties of Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative property</td>
</tr>
<tr>
<td>Identity property</td>
</tr>
<tr>
<td>Zero property</td>
</tr>
</tbody>
</table>

LESSON PRACTICE

Practice set Use the multiplication table to find each product:

- \(9 \times 3\)
- \(3 \times 9\)
- \(6 \times 4\)
- \(4 \times 6\)
- \(7 \times 8\)
- \(8 \times 7\)
- \(5 \times 8\)
- \(8 \times 5\)
- \(10 \times 10\)
- \(10 \times 8\)
- \(11 \times 9\)
- \(12 \times 12\)

\[m.\] Which property of multiplication is shown below?

\[12 \times 11 = 11 \times 12\]

\[n.\] Use the zero property of multiplication to find the product:

\[0 \times 25\]

\[o.\] Use the identity property of multiplication to find the product:

\[1 \times 25\]

MIXED PRACTICE

Problem set

1. Hansel ate seventy-two pieces of gingerbread. Gretel ate forty-two pieces of gingerbread. How many pieces of gingerbread did they eat in all?

2. Sherri needs $35 to buy a baseball glove. She has saved $18. How much more money does she need?
3. Draw a rectangle that is 4 cm long and 3 cm wide. What is the perimeter of the rectangle?

Find the missing numbers in each counting sequence:

4. ..., 12, ____ , 30, 36, ____, ...

5. ..., 36, ____ , 24, 20, ____, ...

6. Change this addition problem to a multiplication problem. Then find the product on the multiplication table shown in this lesson.

\[6 + 6 + 6 + 6 + 6 + 6 + 6 \]

7. (a) Round 28 to the nearest ten.
(b) Round $12.29 to the nearest dollar.

8. A right triangle has one right angle. Draw a right triangle. Draw the two perpendicular sides 3 cm long and 4 cm long.

9. It is morning. What time will it be 10 minutes from now?

10. What fraction of this group is shaded?

11. Write 417 in expanded form. Then use words to write the number.

12. What temperature is shown on this thermometer?
13. $76 - 29 = 47$
14. $13 + 388 = 401$
15. $73 - 39 = 34$
16. $5.87 + 2.43 = 8.3$

17. $46 - C = 19$
18. $N + 48 = 87$

19. $29 + Y = 57$
20. $D - 14 = 37$

21. $78 - 43 = 35$
22. $77 - 17 = 60$
23. $53 - 19 = 34$

24. Use the multiplication table to find each product:
(a) 8×11
(b) 7×10
(c) 5×12

25. Compare: 1 yard \bigcirc 1 meter

26. Which of the following shows 3 ones and 4 hundreds?
A. 304 B. 403 C. 4003 D. 3400

27. The product of 9 and 3 is 27. How many times does this product appear in this lesson’s multiplication table? What property of multiplication does this show?
LESSON 29
Multiplication Facts (0’s, 1’s, 2’s, 5’s)

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
We can split numbers to help us add. Adding 35 and 8, we may notice that 35 needs 5 more to make 40, and that 8 splits into 5 + 3. So to add 35 and 8, we could add 35 + 5 + 3.

a. 35 + 7
b. 26 + 8
c. 38 + 5
d. 47 + 6
e. 68 + 7
f. 45 + 8

Problem Solving:
Hope has seven coins in her right pocket. None of the coins are dollar or half-dollar coins. What is the lowest possible value of all seven coins? What is the highest possible value of all seven coins?

NEW CONCEPT

We will begin memorizing the basic multiplication facts. Eighty-eight of the facts in the multiplication table shown in Lesson 28 have 0, 1, 2, or 5 as one of the factors. These facts are easy to learn.

Zero times any number equals zero.

\[0 \times 5 = 0 \quad 5 \times 0 = 0 \quad 7 \times 0 = 0 \quad 0 \times 7 = 0 \]

One times any number equals the number.

\[1 \times 5 = 5 \quad 5 \times 1 = 5 \quad 7 \times 1 = 7 \quad 1 \times 7 = 7 \]

Two times any number doubles the number.

\[2 \times 5 = 10 \quad 2 \times 7 = 14 \quad 2 \times 6 = 12 \quad 2 \times 8 = 16 \]

Five times any number equals a number that ends in zero or in five.

\[5 \times 1 = 5 \quad 5 \times 3 = 15 \quad 5 \times 7 = 35 \quad 5 \times 8 = 40 \]

Until we have memorized the facts, we can find multiples of 2 by counting by twos. So 6 \times 2 is the sixth number we say when counting by twos: 2, 4, 6, 8, 10, 12. We can find multiples of 5 by counting by fives. The sixth number we say when counting by fives is 30, so 6 \times 5 = 30. However, counting is not a substitute for memorizing the facts.
LESSON PRACTICE

Practice set Take Facts Practice Test C
(Multiplication Facts: 0’s, 1’s, 2’s, 5’s).

MIXED PRACTICE

Problem set

1. Ninety-two blackbirds squawked noisily in the tree. Then some flew away. Twenty-four blackbirds remained. How many blackbirds flew away? Write a subtraction pattern and solve the problem.

2. Robill collected 42 seashells. Then Buray collected some seashells. They collected 83 seashells in all. How many seashells did Buray collect?

3. Conner estimated that the radius of one of the circles on the playground was 2 yards. If Conner was correct, then (a) the radius was how many feet? (b) the diameter was how many feet?

Find the missing numbers in each counting sequence:

4. ..., 8, _____, _____, 32, 40, _____, ...

5. ..., 14, _____, _____, 35, 42, ...

6. Use the digits 4, 5, and 6 once each to write a three-digit odd number less than 640.

7. Use digits and a comparison symbol to write that two hundred nine is greater than one hundred ninety.

8. It is afternoon. What time will it be in 6 hours?

9. Draw a rectangle 3 cm long and 1 cm wide. Then shade two thirds of it.

10. Find each product:
 (a) 2 × 8
 (b) 5 × 7
 (c) 2 × 7
 (d) 5 × 8
11. In this figure, what type of angle is angle A?

12. To what number is the arrow pointing?

13. At what temperature does water freeze
 (a) on the Fahrenheit scale?
 (b) on the Celsius scale?

14. \[15. \quad 16. \quad 17. \]
 \[
 \begin{array}{ccc}
 \text{83} & \text{286} & \text{72} \\
 -19 & +387 & -38 \\
 \end{array}
 \quad \begin{array}{cc}
 \text{83} & \text{286} & \text{72} \\
 -19 & +387 & -38 \\
 \end{array}
 \quad \begin{array}{c}
 \text{83} & \text{286} & \text{72} \\
 -19 & +387 & -38 \\
 \end{array}
 \quad \begin{array}{c}
 \text{83} & \text{286} & \text{72} \\
 -19 & +387 & -38 \\
 \end{array}
 \]

15. \[
 \begin{array}{c}
 \text{83} \\
 -19 \\
 \end{array}
 \quad \begin{array}{c}
 \text{286} \\
 +387 \\
 \end{array}
 \quad \begin{array}{c}
 \text{72} \\
 -38 \\
 \end{array}
 \quad \begin{array}{c}
 \text{5.87} \\
 +2.79 \\
 \end{array}
 \]

16. \[
 \begin{array}{c}
 \text{83} \\
 -19 \\
 \end{array}
 \quad \begin{array}{c}
 \text{286} \\
 +387 \\
 \end{array}
 \quad \begin{array}{c}
 \text{72} \\
 -38 \\
 \end{array}
 \quad \begin{array}{c}
 \text{5.87} \\
 +2.79 \\
 \end{array}
 \]

17. \[
 \begin{array}{c}
 \text{83} \\
 -19 \\
 \end{array}
 \quad \begin{array}{c}
 \text{286} \\
 +387 \\
 \end{array}
 \quad \begin{array}{c}
 \text{72} \\
 -38 \\
 \end{array}
 \quad \begin{array}{c}
 \text{5.87} \\
 +2.79 \\
 \end{array}
 \]

18. \[
 \begin{array}{c}
 \text{19} \\
 +Q \\
 \end{array}
 \quad \begin{array}{c}
 \text{88} \\
 -N \\
 \end{array}
 \quad \begin{array}{c}
 \text{88} \\
 -M \\
 \end{array}
 \quad \begin{array}{c}
 \text{G} \\
 +14 \\
 \end{array}
 \]

19. \[
 \begin{array}{c}
 \text{19} \\
 +Q \\
 \end{array}
 \quad \begin{array}{c}
 \text{88} \\
 -N \\
 \end{array}
 \quad \begin{array}{c}
 \text{88} \\
 -M \\
 \end{array}
 \quad \begin{array}{c}
 \text{G} \\
 +14 \\
 \end{array}
 \]

20. \[
 \begin{array}{c}
 \text{88} \\
 -M \\
 \end{array}
 \quad \begin{array}{c}
 \text{88} \\
 -M \\
 \end{array}
 \quad \begin{array}{c}
 \text{88} \\
 -M \\
 \end{array}
 \quad \begin{array}{c}
 \text{G} \\
 +14 \\
 \end{array}
 \]

21. \[
 \begin{array}{c}
 \text{88} \\
 -M \\
 \end{array}
 \quad \begin{array}{c}
 \text{88} \\
 -M \\
 \end{array}
 \quad \begin{array}{c}
 \text{88} \\
 -M \\
 \end{array}
 \quad \begin{array}{c}
 \text{G} \\
 +14 \\
 \end{array}
 \]

22. \[
 \begin{array}{c}
 \text{870} \\
 -470 \\
 \end{array}
 \quad \begin{array}{c}
 \text{525} \\
 -521 \\
 \end{array}
 \]

23. \[
 \begin{array}{c}
 \text{525} \\
 -521 \\
 \end{array}
 \]

24. Change this addition problem to a multiplication problem. Then find the product on the multiplication table.
 \[
 \begin{array}{c}
 8 + 8 + 8 \\
 \end{array}
 \]

25. \[
 \begin{array}{c}
 1 + 9 + 2 + 8 + 3 + 7 + 4 + 6 + 5 + 10 \\
 \end{array}
 \]

26. Which of these does not equal 24?
 \[
 \begin{array}{c}
 A. \ 3 \times 8 \quad B. \ 4 \times 6 \quad C. \ 2 \times 12 \quad D. \ 8 \times 4 \\
 \end{array}
 \]

27. Name the property of multiplication shown by each of these examples:
 (a) \(0 \times 50 = 0 \)
 (b) \(9 \times 6 = 6 \times 9 \)
 (c) \(1 \times 75 = 75 \)
We have already learned how to subtract three-digit numbers without regrouping. In this lesson we will subtract three-digit numbers with regrouping.

Example 1

Find the difference: $365 - \$187$

Solution

We write the first number on top. We line up the last digits. We cannot subtract 7 ones from 5 ones.

We exchange 1 ten for 10 ones. Now there are 5 tens and 15 ones. We can subtract 7 ones from 15 ones to get 8 ones.

We cannot subtract 8 tens from 5 tens, so we exchange 1 hundred for 10 tens. Now there are 2 hundreds and 15 tens, and we can continue subtracting.

We subtract 1 hundred from 2 hundreds to finish. The difference is $\$178$.

\[
\begin{array}{c}
\text{\$365} \\
- \text{\$187} \\
\hline
\text{\$178}
\end{array}
\]
Example 2 Subtract: \[\$4.10 - \$1.12 \]

Solution We subtract pennies, then dimes, and then dollars. We remember to align the decimal points.

\[
\begin{align*}
0.10 & \quad 3.00 \\
- 1.12 & \quad - 1.12 \\
\hline
0.88 & \quad 1.88 \\
\end{align*}
\]

\[\$2.98 \]

LESSON PRACTICE

Practice set* Subtract:

- a. \(\$365 \) \(- \$287 \)
- b. \(\$4.30 \) \(- \$1.18 \)
- c. \(563 \) \(- 356 \)
- d. \(240 - 65 \)
- e. \(459 - 176 \)
- f. \(157 - 98 \)

MIXED PRACTICE

Problem set 1. The room was full of students when the bell rang. Then forty-seven students left the room. Twenty-two students remained. How many students were there when the bell rang? Write a subtraction pattern and solve the problem.

2. Fifty-six children peered through the window of the pet shop. After the store owners brought the puppies out, there were seventy-three children peering through the window. How many children came to the window after the puppies were brought out?

3. A nickel is worth 5¢. Gilbert has an even number of nickels in his pocket. Which of the following **could not be** the value of his nickels?

 A. 45¢
 B. 70¢
 C. 20¢

4. It is morning. What time will it be in 15 minutes?
5. What is the sixth number in this counting sequence?
 6, 12, 18, ...

6. To what number is the arrow pointing?

7. Use a compass to draw a circle with a radius of 1 inch. Then shade one fourth of the circle.

8. Write 843 in expanded form. Then use words to write the number.

9. Multiply:
 (a) 6×8 (b) 4×2 (c) 4×5 (d) 6×10

10. Write two addition facts and two subtraction facts using the numbers 10, 20, and 30.

11. Use a centimeter ruler to measure the rectangle below.
 (a) How long is the rectangle?
 (b) How wide is the rectangle?
 (c) What is the perimeter of the rectangle?

12. What type of angle is each angle of a rectangle?

13. $746 - 295 = 451$
14. $3.86 + 2.78 = 6.64$
15. $61 - 48 = 13$
16. $4.86 - 2.75 = 2.11$

17. $51 + M = 70$
18. $86 - A = 43$

19. $25 + Y = 36$
20. $Q - 24 = 37$

21. (a) Round 89 to the nearest ten.
 (b) Round 8.90 to the nearest dollar.
22. $25\text{¢} + 25\text{¢} + 25\text{¢} + 25\text{¢}$

23. There are 100 cents in a dollar. How many cents are in half of a dollar?

24. Change this addition problem to a multiplication problem. Then find the product on the multiplication table.

$$7 + 7 + 7 + 7 + 7 + 7 + 7$$

25. $4 + 3 + 8 + 4 + 2 + 5 + 7$

26. Which of these sets of numbers is not an addition/subtraction fact family?

A. 1, 2, 3
B. 2, 3, 5
C. 2, 4, 6
D. 3, 4, 5

27. Find each product on the multiplication table:

(a) 10×10
(b) 11×11
(c) 12×12
Focus on

Multiplication Patterns • Area • Squares and Square Roots

One model of multiplication is a rectangular **array**. Here we see an array of 15 stars arranged in three rows and five columns. This array shows that 3 times 5 equals 15. This array also shows that 3 and 5 are both factors of 15.

Refer to this array of X’s to answer problems 1–4 below.

```
X X X X
X X X X
X X X X
```

1. How many rows are in the array?

2. How many columns are in the array?

3. How many X’s are in the array?

4. What multiplication fact is illustrated by the array?

Some numbers of objects can be arranged in more than one array. In problems 5–7 we will work with an array of 12 X’s that is different from the array we discussed above.

5. Draw an array of 12 X’s arranged in two rows.

6. How many columns of X’s are in the array you drew?

7. What multiplication fact is illustrated by the array you drew?
Below we show an array of 10 X’s.

\[
\begin{array}{cccccc}
X & X & X & X & X \\
X & X & X & X & X
\end{array}
\]

8. Which two factors of 10 are shown by this array?

9. Can you draw a rectangular array of ten X’s with three rows?

10. Can you draw a rectangular array of ten X’s with four rows?

11. Can you draw a rectangular array of ten X’s with five rows?

12. Draw an array of X’s arranged in three rows and six columns. Then write the multiplication fact illustrated by the array.

13. The chairs in a room were arranged in six rows, with four chairs in each row. Draw an array that shows this arrangement, and write the multiplication fact illustrated by the array.

Area

Another model of multiplication is the area model. The area model is like an array of connected squares. This model shows that \(4 \times 6 = 24 \):

Use 1-cm grid paper to work problems 14–16, 20, and 23–25 below.

14. Outline a 4-cm-by-6-cm rectangle like the one shown above. How many small squares are in the rectangle?
15. Outline a 3-cm-by-8-cm rectangle. How many small squares are in the rectangle? What multiplication fact is illustrated by the rectangle?

16. Outline another rectangle that is made up of 24 squares. Make this rectangle 2 cm wide. How long is the rectangle? What multiplication fact is illustrated by the rectangle?

With your finger, trace around the edges of a sheet of paper. As your finger moves around the paper, it traces the perimeter of the paper. Now use the palm of your hand to rub over the surface of the paper. As you do this, your hand sweeps over the area of the paper. The area is the amount of surface within the perimeter (boundary) of a flat figure.

17. Use your finger to trace the perimeter of your desktop.

18. Use the palm of your hand to sweep over the area of your desktop.

We measure the area of a shape by counting the number of squares of a certain size that are needed to cover its surface. Here is a square centimeter:

19. How many square centimeters cover the area of this rectangle?

20. On 1-cm grid paper, outline a 4-cm-by-3-cm rectangle. What is the area of the rectangle?
Here is a square inch:

21. How many square inches are needed to cover the rectangle below?

22. Use your ruler to draw a rectangle 3 in. long and 3 in. wide. What is the area of the rectangle?

Squares and square roots

Some rectangles are squares. A square is a rectangle whose length and width are equal.

23. On 1-cm grid paper, outline four squares, one each with the following unit measurements: 1 by 1, 2 by 2, 3 by 3, and 4 by 4. Write the multiplication fact for each square.

We say that we “square a number” when we multiply a number by itself. If we square 3, we get 9 because $3 \times 3 = 9$. Likewise, 4 squared is 16 because 4×4 is 16.

24. What number do we get if we square 6? Outline a square on grid paper to show the result.

25. What number equals 7 squared? Outline a square on grid paper to illustrate the answer.
The numbers 1, 4, 9, 16, 25, and so on form a sequence of **square numbers**, or **perfect squares**. Notice that the increase from one term to the next term forms a sequence of odd numbers.

\[1, 4, 9, 16, 25, \ldots \]

26. Find the next five terms in the sequence of square numbers above.

27. Look back at the multiplication table in Lesson 28. What pattern do the square numbers make in the table?

To find the **square root** of a number, we find a number that, when multiplied by itself, equals the original number. The square root of 25 is 5 because \(5 \times 5 = 25 \). The square root of 36 is 6. A square drawn on grid paper can help us understand the idea of square roots. When searching for a square root, we know the number of small squares in all, and we are looking for the length of a side.

We indicate the square root of a number by using a square root symbol.

\[\sqrt{\text{number}} \]

We read the symbol as “the square root of.” To read \(\sqrt{25} = 5 \) we say, “The square root of twenty-five equals five.”

28. (a) What number equals 9 squared?

(b) What is the square root of 9?

29. Find each square root:

(a) \(\sqrt{4} \) \hspace{2cm} (b) \(\sqrt{16} \) \hspace{2cm} (c) \(\sqrt{64} \)

30. If the area of a square is 49 square centimeters, how long is each side of the square?
Saxon Math 5/4

Lesson 31
Word Problems About Comparing

Warm-up

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Practice splitting the second number to add:

a. 57 + 8 b. 78 + 6 c. 49 + 4

Review:

d. 300 + 520 + 70 e. 63 + 19 + 200 f. 354 + 220 + 18

Patterns:
Here we show four squares. The smallest is made up of 1 small square. The next three squares are made up of 4, 9, and 16 small squares. Draw the next two squares in the pattern.

\[
\begin{array}{cccc}
1 & 4 & 9 & 16 \\
\end{array}
\]

New Concept

There are 43 apples in the large basket.

There are 19 apples in the small basket.

When we compare the number of apples in the two baskets, we see that 43 is greater than 19. To find how much greater 43 is than 19, we subtract.

\[
\begin{array}{c}
\text{Larger amount} \\
43 \\
\text{– Smaller amount} \\
19 \\
\text{Difference} \\
24 \\
\end{array}
\]
As we think about this story, we realize that it is not a “some went away” story, because nothing went away. This is a different kind of story. In this story we are comparing two numbers. One way to compare two numbers is to subtract to find their difference. We subtract the smaller number from the larger number. Here we show two ways to write the subtraction pattern:

\[
\begin{align*}
\text{Larger} \\
- \text{Smaller} \\
\hline
\text{Difference}
\end{align*}
\]

\[
\text{Larger} - \text{smaller} = \text{difference}
\]

The difference tells us “how many more.” It also tells us “how many fewer.” There are 24 more apples in the large basket than there are in the small basket. We can say this comparison another way. There are 24 fewer apples in the small basket than there are in the large basket.

Here we show a way to diagram a “larger-smaller-difference” story. In the diagram we have used the numbers from the apple story above.

Example 1 Forty-two apples is how many more than 13 apples?

Solution To find “how many more,” we use a subtraction pattern. Here we are comparing the two numbers 42 and 13.

\[
\begin{array}{c|c|c}
\text{Pattern} & \text{Problem} \\
\hline
\text{Larger} & \text{42 apples} \\
- \text{Smaller} & - \text{13 apples} \\
\hline
\text{Difference} & \text{29 apples}
\end{array}
\]

Forty-two apples is 29 apples more than 13 apples.
Example 2 Seventeen apples is how many fewer than 63 apples?

Solution We are asked to find “how many fewer.” The pattern is the same as the pattern for finding “how many more.” We use a subtraction pattern to compare the numbers.

\[
\begin{array}{ccc}
\text{Pattern} & \text{Problem} \\
\text{Larger} & 63 \text{ apples} \\
- \text{Smaller} & -17 \text{ apples} \\
\text{Difference} & 46 \text{ apples} \\
\end{array}
\]

Seventeen apples is 46 apples fewer than 63 apples.

Example 3 Seventeen is how much less than 42?

Solution Problems about numbers that ask “how much less” or “how much greater” also have a subtraction pattern. This time we will show the pattern sideways:

Pattern: Larger – smaller = difference

Problem: 42 – 17 = 25

Seventeen is 25 less than 42.

LESSON PRACTICE

Practice set Write a subtraction pattern for each problem. Then answer the question.

a. Forty-three is how much greater than twenty-seven?

b. Mary has 42 peanuts. Frank has 22 peanuts. How many fewer peanuts does Frank have?

c. Cesar had 53 shells. Juanita had 95 shells. How many more shells did Juanita have?

MIXED PRACTICE

Problem set 1. There were 43 parrots in the tree. Some flew away. Then there were 27 parrots in the tree. How many parrots flew away? Write a subtraction pattern and solve the problem.

2. One hundred fifty is how much greater than twenty-three? Write a subtraction pattern and solve the problem.

3. Twenty-three apples is how many fewer than seventy-five apples? Write a subtraction pattern and solve the problem.
4. It is evening. What time will it be 3 hours from now?

5. Write 412 in expanded form. Then use words to write the number.

6. What fraction of this figure is shaded?

7. The rectangle shown at right is 4 cm long and 2 cm wide.
 (a) What is the perimeter?
 (b) What is the area?

8. Multiply:
 (a) 2×5 (b) 5×7 (c) 2×7 (d) 4×11

9. Write two addition facts and two subtraction facts using the numbers 20, 30, and 50.

10. What temperature is five degrees below zero on the Celsius scale?

11. To what number is the arrow pointing?

12. Multiply:
 (a) 5×8 (b) 2×8 (c) 5×9

13. (a) How many quarters equal one dollar?
 (b) A quarter is what fraction of a dollar?
 (c) Three quarters are what fraction of a dollar?
14. Use digits and symbols to write this comparison: “Three hundred nine is less than three hundred ninety.”

15. Three hundred nine is how much less than 390?

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.22</td>
<td>909</td>
<td>422</td>
<td>703</td>
<td>2.95</td>
<td>27</td>
</tr>
<tr>
<td>-4.86</td>
<td>370</td>
<td>22</td>
<td>76</td>
<td>2.95</td>
<td>209</td>
</tr>
<tr>
<td>$+37$</td>
<td>370</td>
<td>22</td>
<td>76</td>
<td>2.95</td>
<td>209</td>
</tr>
<tr>
<td>-2.95</td>
<td>209</td>
<td>22</td>
<td>76</td>
<td>2.95</td>
<td>209</td>
</tr>
<tr>
<td>$+37$</td>
<td>370</td>
<td>22</td>
<td>76</td>
<td>2.95</td>
<td>209</td>
</tr>
<tr>
<td>-2.95</td>
<td>209</td>
<td>22</td>
<td>76</td>
<td>2.95</td>
<td>209</td>
</tr>
</tbody>
</table>

24. What multiplication fact is illustrated by this square?

25. Find each square root:

(a) $\sqrt{9}$
(b) $\sqrt{25}$

26. Which of these does not equal 9?

A. 3 squared
B. $\sqrt{81}$
C. $\sqrt{18}$
D. $\sqrt{25} + \sqrt{16}$

27. Multiply:

(a) 1×1
(b) 5×5
(c) 8×8
(d) 9×9
LESSON

32

Multiplication Facts (9’s)

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Practice splitting the second number to add:

a. 49 + 6
 b. 65 + 8
 c. 38 + 8

Review:

 d. 920 + 38 + 7
 e. 57 + 29 + 100
 f. 350 + 40 + 500

Problem Solving:

Tom has seven coins in his right pocket. He does not have any dollar or half-dollar coins. Tom has at least one penny, one nickel, one dime, and one quarter, but he has no more than two coins of any type. What are the possible values of all seven coins? (There are four possibilities.)

NEW CONCEPT

We can more easily learn the 9’s multiplication facts by recognizing the patterns in the facts. In the 9’s facts below, notice that the first digit of each product is one less than the number that is multiplied by nine. Also notice that the two digits of each product add up to nine.

\[
\begin{align*}
9 \times 2 &= 18 & (1 + 8 &= 9) \\
9 \times 3 &= 27 & (2 + 7 &= 9) \\
9 \times 4 &= 36 & (3 + 6 &= 9) \\
9 \times 5 &= 45 & (4 + 5 &= 9) \\
9 \times 6 &= 54 & (5 + 4 &= 9) \\
9 \times 7 &= 63 & (6 + 3 &= 9) \\
9 \times 8 &= 72 & (7 + 2 &= 9) \\
9 \times 9 &= 81 & (8 + 1 &= 9) \\
9 \times 10 &= 90 & (9 + 0 &= 9)
\end{align*}
\]

These two patterns can help us quickly multiply by nine.
Example 1 What is the **first digit** of each product?

(a) 9 (b) 3 (c) 9 (d) 4 (e) 9
\[\begin{array}{c}
\times 6 & \times 9 & \times 7 & \times 9 & \times 8 \\
\end{array} \]

Solution The first digit is one less than the number multiplied by nine.

(a) 9 (b) 3 (c) 9 (d) 4 (e) 9
\[\begin{array}{c}
\times 6 & \times 9 & \times 7 & \times 9 & \times 8 \\
5 & 2 & 6 & 3 & 7 \\
\end{array} \]

Example 2 Complete each two-digit number so that the sum of the digits is nine:

(a) 3 (b) 6 (c) 4 (d) 5
\[\begin{array}{c}
\end{array} \]

(e) 8 (f) 1 (g) 2 (h) 7
\[\begin{array}{c}
\end{array} \]

Solution (a) 36 (b) 63 (c) 45 (d) 54
\[\begin{array}{c}
\end{array} \]

(e) 81 (f) 18 (g) 27 (h) 72
\[\begin{array}{c}
\end{array} \]

LESSON PRACTICE

Practice set Find the product for each multiplication fact. Remember, the first digit is one less than the number multiplied, and the two digits add up to nine.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>3</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td></td>
<td>3</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>e.</td>
<td>9</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>f.</td>
<td>7</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>g.</td>
<td>9</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>h.</td>
<td></td>
<td>9</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

MIXED PRACTICE

Problem set

1. There are two hundred fifteen pages in the book. Hannah has read eighty-six pages. How many more pages are left to read? Write a subtraction pattern and solve the problem.

2. Use the digits 7, 8, and 9 once each to make an even number greater than 800.

3. Use digits and a comparison symbol to show that four hundred eighty-five is less than six hundred ninety.

4. This is a sequence of square numbers. What are the next three numbers in the sequence?

 1, 4, 9, 16, _____, _____, _____, …
5. It is morning. What time is shown on this clock?

6. Change this addition problem to a multiplication problem. Then find the product on the multiplication table.

\[6 + 6 + 6 + 6 + 6 + 6 + 6 \]

7. Write 729 in expanded form. Then use words to write the number.

8. (a) Round 66 to the nearest ten.
(b) Round \$6.60 to the nearest dollar.

9. (a) Each side of this square is how many centimeters long?
(b) What is the perimeter of the square?

10. Which two uppercase letters are formed with only two perpendicular line segments?

11. \(62 - W = 38 \)

12. What fraction of this rectangle is shaded?

13. Draw an array of X’s to show the multiplication \(5 \times 5 \).

14. Is the value of three nickels and two dimes an even number of cents or an odd number of cents?

15. To what number is the arrow pointing?
Multiply:
16. (a) 9 × 6 (b) 9 × 8 (c) 9 × 4 (d) 9 × 10
17. (a) 6 × 6 (b) 4 × 4 (c) 7 × 7 (d) 10 × 10

18. What multiplication fact is illustrated by this square?

19. $\sqrt{81}$
20. $3.60 - 1.37$

21. 413 − 380
22. 875 − 218

23. Compare: 47 + 36 □ 57 + 26

24. Five squared is how much more than the square root of 25?

25. This rectangle is 5 cm long and 2 cm wide. What is the area of the rectangle?

26. Jacob saw an array of freshly baked cookies on a cookie sheet. There were four rows of cookies with four cookies in each row. How many cookies will be left on the sheet if he takes one cookie?
 A. 3 B. 7 C. 12 D. 15

27. Which property of multiplication does this story illustrate?
 Twenty-four desks were arranged in 4 rows with 6 desks in each row. Then they were moved into 6 rows with 4 desks in each row.
LESSON

Writing Numbers Through Hundred Millions, Part 1

WARM-UP

Facts Practice: Multiplication Facts: 0’s, 1’s, 2’s, 5’s (Test C)

Mental Math:
Subtract numbers ending in one or two zeros:
 a. 60 – 40
 b. 80 – 30
 c. 800 – 300
Review:
 d. 67 + 7
 e. 67 + 19 + 100
 f. 340 + 35 + 115

Patterns:
These dots are arranged in square patterns of 2 rows of 2, 3 rows of 3, and so on. Copy these patterns and continue the sequence to 7 rows of 7.

NEW CONCEPT

Recall that the places in a three-digit number are the ones place, the tens place, and the hundreds place. The three places to the left of the hundreds place are the thousands place, the ten-thousands place, and the hundred-thousands place.

In order to make the numbers easier to read, we can use commas when writing numbers equal to or greater than one thousand.¹ To read a whole number with four, five, or six digits,

¹Note: Four-digit whole numbers are often written without a comma. In this book we will typically not use a comma to express a four-digit whole number. However, we will use commas to express any whole number with more than four digits.
we read the number to the left of the comma, say “thousand” at the comma, and then read the number after the comma.

4,507 is read four thousand, five hundred seven

34,507 is read thirty-four thousand, five hundred seven

234,507 is read two hundred thirty-four thousand, five hundred seven

When we write a number in words, we place a comma after the word thousand, as shown above.

Example 1 Use words to write 123456.

Solution To make the number easier to read, we insert a comma three places from the right-hand end of the number.

123,456

Then we write the number that is to the left of the comma.

one hundred twenty-three

Next we write “thousand” followed by a comma.

one hundred twenty-three thousand,

Finally, we write the number that is to the right of the comma.

one hundred twenty-three thousand, four hundred fifty-six

To write a whole number with seven, eight, or nine digits, we use another comma to indicate millions.

To read a whole number with seven, eight, or nine digits, we first read the digits to the left of the millions comma and say “million” at the comma. Then we read the next
three digits and say “thousand” at the next comma. We finish by reading the remaining digits.

15,000,000 is read fifteen million

2,500,000 is read two million, five hundred thousand

1,258,300 is read one million, two hundred fifty-eight thousand, three hundred

Example 2 Use words to write 12345678.

Solution Counting from the right, we place a comma every three digits.

12,345,678

Next we write the part of the number to the left of the millions comma.

twelve million

Since there are more digits to read, we place a comma after the word million. Then we write the part of the number up to the thousands comma.

twelve million, three hundred forty-five thousand

Since there are still more digits to read, we place a comma after the word thousand and write the rest of the number.

twelve million, three hundred forty-five thousand, six hundred seventy-eight

Example 3 Write 75,634 in expanded form.

Solution The 7 is in the ten-thousands place. It has a value of 70,000. So we write

\[70,000 + 5000 + 600 + 30 + 4\]

Example 4 Which digit in 12,345,678 is in the hundred-thousands place?

Solution The digit 3 is in the hundred-thousands place.

Example 5 Compare: 1,510,000 \(\bigcirc\) 1,501,000

Solution We compare the numbers place-by-place, beginning with the greatest place value (millions).

1,510,000 \(>\) 1,501,000
LESSON PRACTICE

Practice set As a class, read aloud the following numbers:

- a. 125,000
- b. 435,000,000
- c. 12,500
- d. 25,375,000
- e. 4875
- f. 9,250,625

Use words to write the numbers in problems g–j.
- g. 2750
- h. 14,518
- i. 16,000,000
- j. 3,500,000

k. Write 5280 in expanded form.
l. Write 2040 in expanded form.

m. Which digit in 7,284,359 is in the ten-thousands place?

n. Which digit in 98,765,432 is in the millions place?

o. Compare: 2,760,000 \bigcirc 2,670,000

p. Arrange these important years in aerospace history in chronological order (from earliest to latest):

1969, 1903, 1957, 1927

MIXED PRACTICE

Problem set 1. When Keisha looked the first time, she saw 211 rabbits frolicking in the glen. When she looked the second time, there were 272 rabbits frolicking in the glen. How many more rabbits did Keisha see the second time? Write a subtraction pattern and solve the problem.

2. Write the number 3425 in expanded form. Then use words to write the number.

3. Draw two parallel lines. Then draw a perpendicular line that makes right angles where it intersects the parallel lines.
4. The square root of 49 is how much less than four squared?

5. On 1-cm grid paper, outline a 2-cm-by-6-cm rectangle.
 (a) What is the perimeter of the rectangle?
 (b) What is the area of the rectangle?

6. Place commas in 1250000. Then use words to write the number.

7. What are the next four numbers in this counting sequence?
 \[\ldots, 230, 240, 250, 260, \underline{270}, \underline{280}, \underline{290}, \underline{300}, \ldots\]

8. Which digit in 123,456,789 is in the ten-millions place?

9. Compare: \(9 \times 4 \, \Box \, \sqrt{36}\)

10. It is evening. What time will it be 2 hours and 25 minutes from now?

11. To what number is the arrow pointing?

Multiply:

12. (a) \(5 \times 8\) (b) \(4 \times 4\) (c) \(8 \times 8\) (d) \(12 \times 12\)

13. (a) \(9 \times 3\) (b) \(9 \times 4\) (c) \(9 \times 5\) (d) \(9 \times 0\)

14. Write two addition facts and two subtraction facts using the numbers 40, 60, and 100.

15. Change this addition problem to a multiplication problem:
 \[20 + 20 + 20 + 20 + 20\]
16. $7.37 \quad 17. \quad 921 \quad 18. \quad 464
\begin{array}{c}
(30) \\
- \quad $2.68 \\
\end{array}
\begin{array}{c}
(30) \\
- \quad 58 \\
\end{array}
\begin{array}{c}
(13) \\
+ \quad 247 \\
\end{array}

19. \quad 329 \quad 20. \quad $4.88 \quad 21. \quad 555
\begin{array}{c}
(24) \\
+ \quad Z \\
\end{array}
\begin{array}{c}
(22) \\
+ \quad $2.69 \\
\end{array}
\begin{array}{c}
(24) \\
- \quad C \\
\end{array}
\begin{array}{c}
(21) \\
547 \\
\end{array}
\begin{array}{c}
\end{array}
\begin{array}{c}
\end{array}
\begin{array}{c}
\end{array}
\begin{array}{c}
222 \\
\end{array}

22. Judy’s birth date is 5/27/58. In which month was she born?

23. Draw a circle with a radius of 1 inch. What is the diameter of the circle?

24. \quad 4 \quad 25. \quad 5
\begin{array}{c}
(17) \\
8 \\
12 \\
16 \\
14 \\
28 \\
\end{array}
\begin{array}{c}
(17) \\
8 \\
7 \\
14 \\
6 \\
21 \\
\end{array}
\begin{array}{c}
+ \quad 37 \\
\end{array}
\begin{array}{c}
+ \quad 15 \\
\end{array}

26. Compare: 3,025,000 \bigcirc 3,250,000

27. Write the next four perfect squares in this sequence:
\begin{array}{c}
(Inv. 3) \\
1, 4, 9, 16, 25, 36, ____, ____, ____, ____, ...
\end{array}
LESSON 34

Writing Numbers Through Hundred Millions, Part 2

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Subtract numbers ending in one or two zeros:

a. 600 − 300
b. 65 − 30
c. 650 − 300

Review:

da. 58 + 4 + 100
b. 36 + 29 + 200
c. 520 + 36 + 126

Problem Solving:

Tom has seven coins in his right pocket. He does not have any dollar or half-dollar coins. Tom has at least one penny, one nickel, one dime, and one quarter, but he has no more than two coins of any type. Although Tom has an odd number of coins, their total value is an even number of cents. What is the total value of the coins?

NEW CONCEPT

In Lesson 33 we used words to write numbers through hundred millions. In this lesson we will use digits to write numbers through hundred millions.

Example 1

Use digits to write eight hundred ninety-five thousand, two hundred seventy.

Solution

It is a good idea to read the entire number before we begin writing it. We see the word thousand, so we know to place a thousands comma after the digits that tell how many thousands.

__ __ __', __ __ __

We read the part of the number before the word thousand and write this number in front of the comma. For “eight hundred ninety-five thousand” we write

895, __ __ __

Now, to the right of the comma, we write the last part of the number, “two hundred seventy.”

895,270
When writing numbers, we must always follow a comma with at least three digits. Sometimes it is necessary to use one or more zeros in order to get the correct number of digits after a comma.

Example 2

Use digits to write one hundred thirty-five million.

Solution

We see the word *million*, so we use this form:

\[_ _ _ , _ _ _ , _ _ _ \]

In front of the word *million*, we read “one hundred thirty-five,” so we write

\[135, _ _ _ , _ _ _ \]

There is nothing written after the word *million*—no thousands, no hundreds, no tens, no ones. However, we need to have three digits after the millions comma and three digits after the thousands comma, so we write six zeros.

\[135,000,000 \]

Example 3

Use digits to write seven thousand, twenty-five.

Solution

For “seven thousand,” we use this form:

\[7, _ _ _ \]

After the word *thousand*, we read “twenty-five.” It would not be correct to write

\[7,25 \quad \text{NOT CORRECT} \]

We need to write three digits after the thousands comma because there are three whole-number places after the thousands place: hundreds, tens, and ones. Since there are no hundreds, we put a zero in the hundreds place.

\[7,025 \quad \text{CORRECT} \]

Example 4

Use digits to write two million, three hundred thousand.

Solution

We see the word *million*, so we use this form:

\[_ _ _ , _ _ _ , _ _ _ \]

In front of the word *million*, we read “two,” so we write

\[2, _ _ _ , _ _ _ \]

Next we read “three hundred thousand,” so we write

\[2,300, _ _ _ \]

Now we fill the three places after the thousands comma with zeros.

\[2,300,000 \]
LESSON PRACTICE

Practice set* Use digits to write each number:

a. one hundred twenty-one thousand, three hundred forty

b. twelve thousand, five hundred seven

c. five thousand, seventy-five

d. twenty-five million

e. twelve million, five hundred thousand

f. two hundred eighty million

MIXED PRACTICE

Problem set

1. Four hundred sixty-five is how much greater than twenty-four? Write a subtraction pattern and solve the problem.

2. Marcie had four hundred twenty marbles. Robert had one hundred twenty-three marbles. How many fewer marbles did Robert have? Write a subtraction pattern and solve the problem.

3. On 1-cm grid paper, outline a square that is 4 cm on each side.

 (a) What is the perimeter of the square?

 (b) What is the area of the square?

4. Write the number 25,463 in expanded form.

5. Draw a circle that has a diameter of 4 centimeters. What is the radius of the circle?

6. It is afternoon. What time will it be in four and a half hours?

7. What fraction of the circles is shaded?
8. Change this addition problem to a multiplication problem. Then find the product.

\[8 + 8 + 8 + 8 + 8 \]

9. Round 76 to the nearest ten. Round 59 to the nearest ten. Then add the rounded numbers.

10. Compare:

(a) 3 \(\bigcirc \) -4
(b) two million \(\bigcirc \) 200,000

11. To what number is the arrow pointing?

[Diagram of a number line with an arrow pointing towards 2200]

12. Multiply:

(a) 5 \(\times \) 7
(b) 6 \(\times \) 6
(c) 9 \(\times \) 9
(d) 10 \(\times \) 10

13. (a) 3 \(\times \) 9
(b) 9 \(\times \) 7
(c) 8 \(\times \) 9
(d) 9 \(\times \) 1

14. Use words to write 3,500,000.

15. Use digits to write seven hundred fifty thousand.

16. \[
\begin{array}{c}
535 \\
- 268 \\
\end{array}
\]

17. \[
\begin{array}{c}
908 \\
- 43 \\
\end{array}
\]

18. \[
\begin{array}{c}
\$471 \\
- \$346 \\
\end{array}
\]

19. \[C + 329 = 715 \]

20. \[C - 127 = 398 \]

21. If the radius of a circle is 12 inches, then the diameter of the circle is how many feet?

22. Five squared is how much more than \(5 + 5 \)?

23. Select two odd numbers and one even number that form an addition/subtraction fact family. Then use the numbers to write two addition facts and two subtraction facts.

24. \[\sqrt{9} + \sqrt{16} \]
25. Draw a triangle that has one obtuse angle.

26. Which digit in 3,756,289 is in the thousands place?
 A. 3 B. 7 C. 5 D. 6

27. In the year 2000 the four most populous U.S. states and their populations were:
 California 33,871,648
 Florida 15,982,378
 New York 18,976,457
 Texas 20,851,820

 These states are listed in alphabetical order. Arrange the list on your paper so that the states and their populations are in order of population, beginning with the greatest population.
LESSON 35

Naming Mixed Numbers • Two Forms of Money

WARM-UP

Facts Practice: Multiplication Facts: 0’s, 1’s, 2’s, 5’s (Test C)

Mental Math:

Subtract numbers ending in one or two zeros:

a. 750 − 200
b. 86 − 50
c. 245 − 200

Review:

da. 78 + 7 + 10
e. 43 + 9 + 110
f. 630 + 45 + 210

Patterns:

The pattern of the sequence below is $1 \times 1, 2 \times 2, 3 \times 3, \ldots$.

Use a multiplication table to help you continue this sequence of square numbers up to 100.

1, 4, 9, 16, ___, ___, ___, ___, ___, 100

NEW CONCEPTS

Naming mixed numbers

A mixed number is a whole number combined with a fraction. The mixed number $3\frac{1}{2}$ is read “three and one half.”

Example 1 How many circles are shaded?

Solution Two whole circles are shaded, and one fourth of another circle is shaded. The total number of shaded circles is two and one fourth, which we write as

$$2\frac{1}{4}$$

Example 2 Use words to write $21\frac{1}{2}$.

Solution We use the word and when naming mixed numbers.

twenty-one and one half
Example 3 Use words to write $7\frac{21}{100}$.

Solution *seven and twenty-one hundredths*

Two forms of money We can show amounts of money by using a number and a cent sign (¢). We put a cent sign behind a number to tell how many cents there are.

\[
324¢ \quad 20¢ \quad 4¢
\]

We can also use a dollar sign ($) to show amounts of money. We put the dollar sign in front of the money amount, and we use a decimal point and two places to the right of the decimal point to show the number of cents. The money amounts below are the same as the ones above, but they are expressed with a dollar sign and decimal point rather than a cent sign.

\[
$3.24 \quad $0.20 \quad $0.04
\]

Example 4 Write fifteen dollars and twenty-five cents using a dollar sign.

Solution When we use a dollar sign and need to show cents, we put a decimal point between dollars and cents.

\[
$15.25
\]

Example 5 Use words to write 30.76.

Solution We write the number of dollars, then “and,” and then the number of cents.

thirty dollars and seventy-six cents

Example 6 Use a dollar sign and decimal point to write seven cents.

Solution To show cents with a dollar sign, we use a decimal point and two places to the right of the decimal point. For seven cents, we have only one digit, so we put a zero between the seven and the decimal point. The dollar sign goes in front of the decimal point.

\[
$.07
\]

We usually write another zero in front of the decimal point to show that there are no dollars.

\[
$0.07
\]
Example 7 Gracie has one quarter, one dime, and one nickel. Write how much money she has using a cent sign. Then write the same amount using a dollar sign and decimal point.

Solution First we find how many cents Gracie has. A quarter is twenty-five cents, a dime is ten cents, and a nickel is five cents.

\[25\text{¢} + 10\text{¢} + 5\text{¢} = 40\text{¢}\]

Now we write forty cents using a dollar sign and decimal point.

\$0.40

LESSON PRACTICE

Practice set What mixed numbers are illustrated by the shaded pictures?

a.

b.

Use words to write each mixed number:

c. 12\(\frac{3}{4}\)
d. 2\(\frac{7}{10}\)
e. 6\(\frac{9}{100}\)

Write each amount with a cent sign instead of a dollar sign:

f. $0.17
g. $0.05

Write each amount with a dollar sign instead of a cent sign:

h. 8¢
i. 30¢

j. Write the value of two quarters, two dimes, and one nickel with a dollar sign. Then use a cent sign to write this amount again.

Use words to write each amount of money:

k. $12.25
l. $20.05

MIXED PRACTICE

Problem set 1. The king saw two hundred seventy peasants. The queen saw one hundred fifty-five peasants. How many more peasants did the king see? Write a subtraction pattern and solve the problem.

2. Every morning Mario runs around the block. The block is 300 yards long and 100 yards wide. How many yards does Mario run when he runs around the block?
3. Ninety-seven oranges were in the first bunch, fifty-seven oranges were in the second bunch, and forty-eight oranges were in the third bunch. How many oranges were in all three bunches?

4. What mixed number is pictured in this figure?

5. Jimbo had four dollars and sixty-five cents. Use a dollar sign and a decimal point to write this amount. Then write this amount using a cent sign.

6. What temperature is shown on this thermometer?

7. Which of these angles does not look like a right angle?
 A.
 B.
 C.
 D.

8. The square root of 81 is how much less than seven squared?

9. It is evening. What time will it be 2 hours and 20 minutes from now?

10. Use words to write $2\frac{3}{10}$.

11. To what number is the arrow pointing?
12. Use words to write $1.43.

Multiply:
13. (a) 6×9
(b) 4×9
(c) 3×9
(d) 10×9

14. (a) 6×6
(b) 7×7
(c) 8×8
(d) 1×1

15. $\sqrt{25} - \sqrt{16}$

16. Draw a rectangle that is 3 cm long and 3 cm wide. Divide the rectangle into thirds and shade $\frac{2}{3}$ of it.

17. $\frac{6.05}{30} - \frac{2.53}{24} = \frac{766}{Z}$

18. $\frac{489}{24} + \frac{Z}{766}$

19. $\frac{5.32}{22} + \frac{3.44}{24}$

20. $\frac{C}{24} + \frac{294}{30} - \frac{245}{352} = \frac{870}{Z}$

21. $\frac{423}{30} - \frac{245}{24} - \frac{Z}{352}$

22. $\frac{670}{24} - \frac{Z}{352}$

23. Use digits to write two hundred fifty million.

24. What are the next three numbers in this counting sequence? ...
 ..., 3400, 3500, 3600, 3700, _____, _____, _____, ...

25. (a) Round 77 to the nearest ten.
 (b) Round 6.82 to the nearest dollar.

26. If $7 + \square = 10$, then which of the following equals $7 - \square$?
 A. 3
 B. 4
 C. 7
 D. 10

27. Compare:
 (a) thirty thousand \bigcirc 13,000
 (b) 74¢ \bigcirc 0.74
Fractions of a Dollar

WARM-UP

Facts Practice: Multiplication Facts: 0’s, 1’s, 2’s, 5’s (Test C)

Mental Math:
Subtract numbers ending in one or two zeros:

a. 840 – 200 b. 840 – 20 c. 845 – 220

Review:

d. 75 + 7 + 200 e. 36 + 39 + 10 f. 300 + 620 + 50

Problem Solving:
A checkerboard has 64 small squares. There are 8 squares along each side. If a square checkerboard had only 36 small squares, then how many squares would there be along each side?

NEW CONCEPT

Since Lesson 22 we have used coins as fractions of a dollar. Because 100 pennies equals one dollar, each penny is \(\frac{1}{100}\) of a dollar. Likewise, since 20 nickels equals a dollar, each nickel is \(\frac{1}{20}\) of a dollar. So we may describe part of a dollar by using a fraction or by using a dollar sign and decimal point.

Example 1

(a) Three pennies are what fraction of a dollar?
(b) Write the value of three pennies using a dollar sign and a decimal point.

Solution

(a) One penny is \(\frac{1}{100}\) of a dollar, so three pennies are \(\frac{3}{100}\) of a dollar.
(b) The value of three pennies can also be written as $0.03.$

Example 2

(a) Which coin equals one fourth of a dollar?
(b) Write \(\frac{1}{4}\) of a dollar using a dollar sign and a decimal point.

Solution

(a) Since four quarters equal a dollar, a quarter is one fourth of a dollar. (The term one quarter means “one fourth.”)
(b) A quarter of a dollar is $0.25.$
Example 3 (a) Three dimes are what fraction of a dollar?
 (b) Write the value of three dimes using a dollar sign and a
decimal point.

Solution (a) Each dime is \(\frac{1}{10}\) of a dollar, so three dimes are \(\frac{3}{10}\) of a
dollar.
 (b) The value of three dimes is 30 cents, which we can write
as \$0.30. So \(\frac{3}{10}\) of a dollar is \$0.30.

Example 4 Compare: \(\frac{1}{20}\) of a dollar \(\circ\) \(\frac{1}{2}\) of a dollar

Solution A nickel is \(\frac{1}{20}\) of a dollar and is less than \(\frac{1}{2}\) of a dollar.
 \[\frac{1}{20} \text{ of a dollar} < \frac{1}{2} \text{ of a dollar}\]

LESSON PRACTICE

Practice set

a. Write the value of three quarters using a dollar sign and a
decimal point. Then write three quarters as a fraction of
a dollar.

b. What fraction of a dollar is three nickels? Write the value
of three nickels using a dollar sign and a decimal point.

c. Fifty pennies are what fraction of a dollar? Write the value
of 50 pennies using a dollar sign and a decimal point.

d. Compare: \(\frac{1}{10}\) of a dollar \(\circ\) \(\frac{1}{4}\) of a dollar

e. Compare: \(\frac{1}{2}\) of a dollar \(\circ\) \$0.25

MIXED PRACTICE

Problem set

1. Quinh is 49 inches tall. His dad is 70 inches tall. Quinh is
 \((31)\) how many inches shorter than his dad?

2. Smith went into the store with \$36.49. He bought a book
 \((25)\) and left the store with \$11.80. How much money did
Smith spend in the store?
3. Beth answered eleven of the twenty-five questions at school. She answered the rest of the questions as homework. How many questions did Beth answer as homework?

4. Write the number of shaded rectangles shown as a mixed number.

5. Which letter below has no right angles?

6. Use words to write 2,700,000.

7. Use digits to write eighty-two thousand, five hundred.

8. It is morning. What time will it be 5 hours and 20 minutes from now?

9. Change this addition problem to a multiplication problem:

\[4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 \]

10. (a) Round 176 to the nearest ten.
 (b) Round $17.60 to the nearest dollar.

11. To what number is the arrow pointing?

Multiply:

12. (a) 2 \times 8 \quad (b) 5 \times 6 \quad (c) 4 \times 5

13. (a) 3 \times 3 \quad (b) 5 \times 5 \quad (c) 9 \times 9

14. (a) 9 \times 7 \quad (b) 9 \times 4 \quad (c) 9 \times 8
15. $\sqrt{36} + \sqrt{49}$

16. $\frac{(30)}{15.52}$
17. $\frac{(22)}{4.89}$
18. $\frac{(30)}{464}$
19. $\frac{(13)}{548}$
20. $\frac{(24)}{487}$
21. $\frac{(24)}{250}$
22. $C - 338 = 238$
23. $87 - B = 54$

24. Which digit in 8,367,254 is in the ten-thousands place?

25. (a) Seven dimes are what fraction of a dollar?
 (b) Write the value of seven dimes using a dollar sign and a decimal point.

26. If a rectangle is 5 in. long and 4 in. wide, then its area is
 A. 9 in.
 B. 18 in.
 C. 20 sq. in.
 D. 18 sq. in.

27. Compare:
 (a) $-12 \bigcirc -21$
 (b) $\frac{1}{4}$ of a dollar \bigcirc 0.25
Reading Fractions and Mixed Numbers from a Number Line

WARM-UP

Facts Practice: Multiplication Facts: 2’s, 5’s, Squares (Test D)

Mental Math:
Subtract numbers ending in one or two zeros:

a. 780 − 200 b. 870 − 230 c. 458 − 30

Review:

a. 58 + 6 b. 157 + 19 c. 435 + 35 + 200

Problem Solving:
The rectangle shown is divided into four areas, A, B, C, and D. Area C is the same size as Area D. Areas C and D together are the same size as Area B. Areas B, C, and D together are the same size as Area A. What fraction of the whole rectangle is each area?

NEW CONCEPT

To name mixed numbers on a number line, we first count the number of segments between consecutive whole numbers. If there are four segments between the whole numbers, each segment equals \(\frac{1}{4} \). If there are six segments between the whole numbers, each segment equals \(\frac{1}{6} \).

Example 1 To what number is the arrow pointing?

\[
\begin{array}{cccc}
5 & 6 & 7 \\
\end{array}
\]

Solution There are three segments between 5 and 6. Each segment equals \(\frac{1}{3} \). The arrow points to \(5\frac{2}{3} \).

Example 2 To what number is each arrow pointing?

(a) \[
\begin{array}{cccc}
17 & 18 & 19 \\
\end{array}
\]

(b) \[
\begin{array}{cccc}
35 & 36 & 37 \\
\end{array}
\]
Solution (a) There are five segments between 17 and 18. Each segment equals \(\frac{1}{5} \). The arrow points to \(17\frac{3}{5} \).

(b) There are six segments between 36 and 37. Each segment equals \(\frac{1}{6} \). The arrow points to \(36\frac{5}{6} \).

LESSON PRACTICE

Practice set* Name each fraction or mixed number marked by the arrows below:

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIXED PRACTICE

Problem set 1. On the way to school Ted saw four hundred twenty-seven petunia blossoms. Karen saw seven hundred fifteen petunia blossoms. How many more petunia blossoms did Karen see?

2. Circe had two hundred seventy-five pigs. After Odysseus arrived, Circe had two hundred ninety-seven pigs. How many more pigs did Circe have after Odysseus arrived?

3. Use digits to write four hundred seventy-five thousand, three hundred forty-two. Then circle the digit in the ten-thousands place.

4. Hilda wants to put square floor tiles that measure one foot on each side in a room that is 9 feet long and 9 feet wide. How many floor tiles will Hilda need?

5. To what mixed number is the arrow pointing?
6. Draw a rectangle whose length is 5 cm and whose width is 3 cm. What is the perimeter of the rectangle?

7. What mixed number is shown by the shaded rectangles?

8. Use words to write $12\frac{3}{10}$.

9. Write 7026 in expanded form. Then use words to write the number.

10. It is early morning. What time will it be 2 hours and 35 minutes from now?

11. (a) Three quarters are what fraction of a dollar?
 (b) Write the value of three quarters using a dollar sign and a decimal point.

12. What multiplication fact is illustrated by this rectangle?

Multiply:

13. (a) 9×6 (b) 9×5 (c) 9×0

14. (a) 10×10 (b) 7×7 (c) 8×8

15. (a) 5×7 (b) 6×5 (c) 2×8

16. $\sqrt{81} + \sqrt{49}$

17. $6.63 - 3.55$

18. $4.99 + 2.88$

19. $A - 247 = 321$

20. $Z + 296 = 531$

21. $523 - Z = 145$

22. $28 + 46 + 48 + 64 + 32 + 344$
23. What are the next three numbers in this counting sequence?
 \[\ldots, 450, 460, 470, 480, \underline{\ldots}, \underline{\ldots}, \underline{\ldots}, \ldots\]

24. If the diameter of a circle is one foot, then the radius of the circle is how many inches?

25. Compare:
 \[(a) \quad \frac{1}{4} \text{ of a dollar} \bigcirc \frac{1}{2} \text{ of a dollar}\]
 \[(b) \quad 101,010 \bigcirc 110,000\]

26. One yard does not equal which of the following?
 \[(Inv. 2)\]
 A. 36 in. B. 3 ft
 C. 1 m D. 2 ft + 12 in.

27. In the year 2000 the four least populous U.S. states and their populations were:
 \[
 \begin{align*}
 \text{Alaska} & \quad 626,932 \\
 \text{North Dakota} & \quad 642,200 \\
 \text{Vermont} & \quad 608,827 \\
 \text{Wyoming} & \quad 493,782
 \end{align*}
 \]

 Arrange these states and their populations in order of the size of the population, beginning with the smallest population.
LESSON 38

Multiplication Facts (Memory Group)

WARM-UP

Facts Practice: Multiplication Facts: 2’s, 5’s, Squares (Test D)

Mental Math:
Add dollars to another amount of money:

a. $3.45 + $1.00
 b. $5.75 + $2.00
 c. $0.85 + $2.00

Review:

 d. 365 – 120
 e. 45 + 8 + 120
 f. 56 + 19 + 200

Problem Solving:

We can make a dollar with two coins—two half-dollars. We can make a dollar with three coins—a half-dollar and two quarters. We can make a dollar with four coins—four quarters. What coins do we need to make a dollar with five coins?

NEW CONCEPT

There are only ten multiplication facts from 0 × 0 through 9 × 9 that we have not practiced. We call these facts the **memory group**.

\[
\begin{align*}
3 \times 4 &= 12 & 4 \times 7 &= 28 \\
3 \times 6 &= 18 & 4 \times 8 &= 32 \\
3 \times 7 &= 21 & 6 \times 7 &= 42 \\
3 \times 8 &= 24 & 6 \times 8 &= 48 \\
4 \times 6 &= 24 & 7 \times 8 &= 56
\end{align*}
\]

Multiplication facts should be practiced by doing **timed, written tests** on a daily basis. A suggested goal is to complete a 100-fact written test in 4 minutes with no more than three errors. You should continue to practice often in order to memorize the facts.

LESSON PRACTICE

Practice set Brainstorm ways to recall the ten memory-group facts. Then take Test F (Multiplication Facts: Memory Group).
MIXED PRACTICE

Problem set

1. There were two hundred twenty toys in the first pile. There were four hundred five toys in the second pile. How many more toys were in the second pile?

2. Five hundred seventy-five thousand, five hundred forty-two people lived in the city. Use digits to write that number of people.

3. Write 2503 in expanded form. Then use words to write the number.

4. On 1-cm grid paper, draw a rectangle 6 cm long and 4 cm wide.
 (a) What is the perimeter of the rectangle?
 (b) What is the area of the rectangle?

5. To what mixed number is the arrow pointing?

6. Which street is parallel to Broad Street?

7. What mixed number is shown by the shaded circles?

8. (a) Round 624 to the nearest ten.
 (b) Round 6.24 to the nearest dollar.

9. It is morning. What time will it be 5 hours and 15 minutes from now?

10. (a) A fifty-cent coin is what fraction of a dollar?
 (b) Write the value of a fifty-cent coin using a dollar sign and a decimal point.
11. Use words to write $2\frac{11}{100}$.

12. This square illustrates six squared. What multiplication fact is illustrated by the square?

Multiply:

13. (a) 3×4
(b) 3×6
(c) 3×8

14. (a) 4×6
(b) 4×7
(c) 4×8

15. (a) 6×7
(b) 6×8
(c) 7×8

16. Compare: $\frac{1}{10}$ of a dollar $\bigcirc \frac{1}{2}$ of a dollar

17. $7.23 - 2.54 = 4.69$
18. $5.42 + 2.69 = 8.11$
19. $943 - 276 = 667$

20. $Z - 581 = 222$
21. $C + 843 = 960$

22. If the radius of a circle is 100 cm, then the diameter of the circle is how many meters?

23. $28 + 36 + 78 + \sqrt{49}$

24. $14 + 18 + 6 + 4 + 18 + 15 = 76$

25. $29 + 5 + 13 + 27 + 63 + 76$

26. Which digit in 457,326,180 is in the hundred-thousands place?
 A. 1 B. 6 C. 4 D. 3

27. Describe each angle as acute, right, or obtuse:
 (a)
 (b)
 (c)
 (Inv. 3)
LESSON 39
Reading an Inch Scale to the Nearest Fourth

WARM-UP

Facts Practice: Multiplication Facts: 2’s, 5’s, 9’s, Squares (Test E)

Mental Math:
To add 99¢ or 98¢ or 95¢ to another amount of money, add a dollar; then subtract 1¢ or 2¢ or 5¢.

a. $3.45 + $0.99 b. $5.75 + $0.98 c. $0.85 + $0.95

Review:

d. 438 – 20 e. 58 + 6 + 200 f. 78 + 9 + 300

Problem Solving:
Cantara’s mom cut an orange in half. Then she cut each half in half. Cantara ate three of the orange slices. What fraction of the orange did Cantara eat?

NEW CONCEPT

To measure lengths in inches, we use an inch scale. Inch scales are found on rulers and on tape measures. An inch scale often has tick marks between the inch marks. These tick marks let us read the inch scale to the nearest half inch, quarter inch, or eighth inch. In this lesson we will practice reading to the nearest quarter inch. Remember, one quarter inch is the same as one fourth inch.

When reading inch scales, keep in mind that \(\frac{2}{4} \) equals \(\frac{1}{2} \). The two circles below show this equivalence. You can recall this relationship by remembering that two quarters equal half of a dollar.

Example How long is the toothpick to the nearest quarter inch?
Solution The toothpick is 2 inches plus a fraction. It is closest to $2\frac{2}{4}$ inches. Instead of writing $\frac{2}{4}$, we write $\frac{1}{2}$. So the toothpick is $2\frac{1}{2}$ inches long. We abbreviate this length as $2\frac{1}{2}$ in.

Now use your own inch ruler to measure the drawing of the toothpick.

LESSON PRACTICE

Practice set a. Draw a picture that shows that $\frac{2}{4}$ equals $\frac{1}{2}$.

Name each point marked by an arrow on this inch scale:

b.

c.

d.

e.

f. Measure the length and width of your notebook paper.

MIXED PRACTICE

Problem set 1. Ann is twelve years old. Ann’s mother is thirty-five years old. Ann’s mother is how many years older than Ann?

2. Four hundred sixty-eight thousand, five hundred two boxes were in the warehouse. Use digits to write that number of boxes.

3. Write the number 3905 in expanded form. Then use words to write the number.

4. Tyrone smashed two hundred forty-three soda pop cans with his right foot and smashed three hundred sixty-four soda pop cans with his left foot. Was the total number of smashed cans an even number or an odd number?

5. Use words to write $100\frac{1}{100}$.

6. Use digits and symbols to show that negative nineteen is greater than negative ninety.

7. Use a dollar sign and a decimal point to write the value of two dollars, one quarter, two dimes, and three nickels.
8. It is morning. What time will it be 10 minutes from now?

9. (a) Nine dimes are what fraction of a dollar?
 (b) Write the value of nine dimes using a dollar sign and a decimal point.

10. Brad lives about 1 kilometer from school. One kilometer is how many meters?

11. How many of these circles are shaded?

12. Use a ruler to find the length of this screw to the nearest quarter inch:

Multiply:

13. (a) 4×3
 (b) 8×3
 (c) 8×4

14. (a) 6×3
 (b) 6×4
 (c) 7×6

15. (a) 7×3
 (b) 7×4
 (c) 8×6

16. $\sqrt{64} - \sqrt{36}$

17. $4.86 + 2.47$
18. $4.86 - 2.47$
19. $293 + 678$

20. $893 - 678$
21. $463 - Y$
22. $463 + Q$

23. This rectangle illustrates eight squared. What multiplication fact is illustrated by the rectangle?
24. Write the next three numbers in this counting sequence:
 ..., 470, 480, 490, 500, _____, _____, _____, ...

25. Draw a triangle that has three acute angles.

26. Which of these does not equal 9 + 9?
 A. 2 × 9
 B. 9 × 2
 C. 3 × 6
 D. nine squared

27. A realtor was writing an advertisement about houses for sale in town. The realtor wanted to list the houses in order from most expensive to least expensive. Here is a list of the asking prices of five houses. Arrange the prices from most expensive to least expensive.

 $385,900
 $189,000
 $1,280,000
 $476,000
 $299,000
Capacity

NEW CONCEPT

Liquids such as milk, juice, paint, and gasoline are measured in the U.S. Customary System in **fluid ounces, cups, pints, quarts, or gallons**. This table shows the abbreviations for each of these units:

<table>
<thead>
<tr>
<th>Abbreviations for U.S. Liquid Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluid ounce</td>
</tr>
<tr>
<td>cup</td>
</tr>
<tr>
<td>pint</td>
</tr>
<tr>
<td>quart</td>
</tr>
<tr>
<td>gallon</td>
</tr>
</tbody>
</table>

The quantity of liquid a container can hold is the **capacity** of the container.

Activity: Measuring Capacity

Materials needed:

- empty, clean plastic or paper containers of the following sizes (with labels that show the container’s size): 1 gallon, 1 half gallon, 1 quart, 1 pint, 1 cup, and 1 liter (or 2 liters)
- supply of water
- funnel
Place five liquid containers (gallon, half gallon, quart, pint, and cup) on a table or desk. Arrange the containers in order from smallest to largest.

Have students estimate the number of cups of liquid needed to fill a 1-pint container. Then have them estimate the number of pints needed to fill the 1-quart container, and so on. After students estimate, fill each container with water using the next-smaller container. Answer the following questions:

a. How many cups of liquid equal a pint?

b. How many pints of liquid equal a quart?

c. How many quarts of liquid equal a half gallon?

d. How many half gallons of liquid equal a gallon?

e. How many quarters equal a dollar?

f. How many quarts of liquid equal a gallon?

g. Copy and complete this table of U.S. Customary liquid measures. Notice that 8 fluid ounces equals 1 cup.

<table>
<thead>
<tr>
<th>U.S. Liquid Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 fl oz = 1 c</td>
</tr>
<tr>
<td>__ c = 1 pt</td>
</tr>
<tr>
<td>__ pt = 1 qt</td>
</tr>
<tr>
<td>__ qt = 1 gal</td>
</tr>
</tbody>
</table>

Liquids are also measured in liters (abbreviation, L). A liter is a metric unit of measure. Compare a one-liter container to a one-quart container (or compare a two-liter container to a half-gallon container). Which container looks larger? Use a full liter (or two-liter) container to fill a quart (or half-gallon) container. Then complete these comparisons:

h. Compare: 1 quart ○ 1 liter

i. Compare: $\frac{1}{2}$ gallon ○ 2 liters
To measure small amounts of liquid, we may use **milliliters** (mL). Droppers used for liquid medicine usually hold one or two milliliters of liquid. One thousand milliliters equals one liter.

Metric Liquid Measure

\[
1000 \text{ mL} = 1 \text{ L}
\]

j. A full 2-liter bottle of liquid contains how many milliliters of liquid?

Inspect the labels of the liquid containers used in the activity. Liquid containers often list two measures of the quantity of liquid they contain. For example, the label on a one-gallon milk bottle may read

\[
1 \text{ gal (3.78 L)}
\]

The measure 3.78 L means \(3 \frac{78}{100}\) liters. The number 3.78 is a **decimal number**. Decimal numbers are often used in measurement, especially in metric measurement. The number 3.78 has a whole-number part, the 3, and a fraction part, the .78. So 3.78 L means “more than three liters but a little less than four liters,” just as $3.78 means “more than three dollars but not quite four dollars.” We read 3.78 as “three and seventy-eight hundredths.” We will learn more about decimal numbers in Investigation 4.

Mixed Practice

Problem set

1. A group of quail is called a **covey**. A group of cows is called a **herd**. A group of fish is called a **school**. There are twenty-five fish in the small school. There are one hundred twelve fish in the big school. How many fewer fish are in the small school?

2. A 36-inch yardstick was divided into two pieces. One piece was 12 inches long. How many inches long was the other piece?

3. Mrs. Green mailed forty-seven postcards from Paris. Her husband mailed sixty-two postcards from Paris. Her son mailed seventy-five postcards from Paris. In all, how many postcards did the Greens mail from Paris?
4. Write the number 7,500,000 in expanded form. Then use words to write the number.

5. Which digit in 27,384,509 is in the thousands place?

6. Use a dollar sign and a decimal point to write the value of three dollars, two quarters, one dime, and two nickels. Then write that amount of money using words.

7. A gallon of milk is how many quarts of milk?

8. How many squares are shaded?

9. Use a ruler to find the length of the line segment below to the nearest quarter inch.

10. Printed on the label of the milk container were these words and numbers:

 1 gal (3.78 L)

 Use this information to compare the following:

 1 gallon ○ 3 liters

11. It is evening. What time will it be 1 hour and 50 minutes from now?

12. In problem 11 what type of angle is formed by the hands of the clock?

 A. acute B. right C. obtuse

13. Compare:

 (a) –29 ○ –32

 (b) $0.75 ○ \frac{3}{4}$ of a dollar

14. Draw a circle with a diameter of 2 centimeters. What is the radius of the circle?
Multiply:

15. (a) 6×6
(b) 7×7
(c) 8×8

16. (a) 7×9
(b) 6×9
(c) 9×9

17. (a) 7×8
(b) 6×7
(c) 8×4

18. $4.98 + 7.65$
19. $M - 6.70 = 3.30$

20. $416 - Z = 179$
21. $536 + Z = 721$

22. $\sqrt{1} + \sqrt{4} + \sqrt{9}$

23. Draw an array of X’s to show 3×7.

24. Use words to write $10\frac{1}{10}$.

25. (a) Two quarters are what fraction of a dollar?
(b) Write the value of two quarters using a dollar sign and a decimal point.

26. A rectangle has an area of 24 square inches. Which of these could be the length and width of the rectangle?

 A. 6 in. by 6 in.
 B. 12 in. by 12 in.
 C. 8 in. by 4 in.
 D. 8 in. by 3 in.

27. Robert measured the width of his notebook paper and said that the paper was $8\frac{3}{4}$ inches wide. What is another way to write $8\frac{3}{4}$?
Focus on

Decimal Numbers

Note: This investigation is divided into three parts. Plan on taking more than one class period to cover this investigation.

Part 1 Activity: Using Money Manipulatives and a Calculator to Display Decimal Numbers

Materials needed:

• Activity Masters 7 and 8 (1 copy of each master per student; masters available in Saxon Math 5/4 Assessments and Classroom Masters)
• $1-bill manipulatives (cut and used in Lesson 4) for each student
• calculator for each student or group of students
• overhead calculator
• zip-top plastic bags to store manipulatives

Preparation:

Use a paper cutter to separate the dime and penny manipulatives on Activity Masters 7 and 8. Distribute manipulatives.

Mr. Deci wants to have some work done around the house and is willing to pay his children to do the work. Mr. Deci uses only $1 bills, dimes, and pennies, and he always makes payments starting with the largest denomination and moving to the lowest denomination.

Todd and Jessie are paid $5 for washing the car. They share the money equally.

1. Using money manipulatives, divide $5 into two equal parts. (You will need to use some dimes.)

2. How much money does each child receive?

3. How many dollars, dimes, and pennies does each receive?

4. Use words to name the amount of money each receives.
Using arithmetic we can split $5 into two equal parts by dividing $5 by 2. We will use a calculator to perform the division. First we press \boxed{C} to clear the calculator. Since there is no dollar sign on a calculator, we enter $5 by just pressing $\boxed{5}$, and we keep in mind that we are working with dollars. Next we press the division key, which looks like this: $\boxed{\div}$. Then we press $\boxed{2}$. Before pressing $\boxed{=}$ to display the answer, predict the number that will be displayed as the answer. After making your prediction, press $\boxed{=}$.

5. What number is displayed?

6. What does the displayed number mean for this problem?

7. Why is there a zero missing in the display?

8. How do the digits in 2.5 relate to the bills and coins the children are paid?

9. Todd and Jessie agree to rake the leaves for $2.50 and to split the pay equally.

10. Use money manipulatives to divide $2.50 into two equal parts. (You will need to use some pennies.)

11. How much money will each child receive?

12. How many dollars, dimes, and pennies is that?

13. Use words to name the amount of money each will receive.

We can split $2.50 into two equal parts by dividing $2.50 by 2. We will do this with a calculator.

14. What key do we press before we enter the numbers? Why?

15. What keys do we press to enter $2.50?

16. Do we enter the 0 of $2.50?

17. Now what keys do we press to find the answer?

18. What answer is displayed?

19. What does the displayed number mean for this problem?
19. How do the digits in 1.25 relate to the bills and coins the children were paid?

 Todd and Jessie agree to sweep the driveway and sidewalks for $1.25 and to split the pay equally.

20. Use money manipulatives to divide $1.25 as equally as possible into two parts.

21. How much money will each child receive?

22. Explain why the money cannot be divided equally.

 There is no coin that has less value than a penny, but there is a name for a tenth of a penny. One tenth of a penny is a mill.

23. Suppose Todd and Jessie could trade in one penny for ten mills. Then they could divide the ten mills between themselves. How many mills would each child receive?

24. Again suppose mills could be used. How many dimes, pennies, and mills would each child receive if $1.25 were divided equally?

Now we will use a calculator to divide $1.25 by 2.

25. Before dividing, predict the number that will be displayed on the calculator after the division.

26. What keys do we press to perform the division?

27. What answer is displayed?

28. What does the display mean for this problem?

29. Why are there three places after the decimal point?

30. How do the digits in 0.625 relate to coins and mills?

For additional exercises that use money to represent decimal place value, refer to Appendix Topic A.
Part 2 Naming Decimal Numbers

Fractions and decimals are two ways to describe parts of a whole. When we write a fraction, we show both a numerator and a denominator. When we write a decimal number, the denominator is not shown but is indicated by the number of places to the right of the decimal point (the number of decimal places). Look at these examples:

<table>
<thead>
<tr>
<th>one decimal place</th>
<th>two decimal places</th>
<th>three decimal places</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 = $\frac{1}{10}$</td>
<td>0.12 = $\frac{12}{100}$</td>
<td>0.123 = $\frac{123}{1000}$</td>
</tr>
</tbody>
</table>

To name a decimal number, we name the numerator shown by the digits and then we name the denominator indicated by the number of decimal places.

As a class, read each of these numbers:

31. $\frac{75}{100}$
32. 0.75
33. $\frac{50}{100}$
34. 0.50
35. $\frac{7}{100}$
36. 0.07
37. 0.05
38. 0.03
39. 0.30
40. 0.21
41. $\frac{3}{10}$
42. 0.3
43. $\frac{7}{10}$
44. 0.7
45. 0.9
46. 0.09
47. $\frac{1}{1000}$
48. 0.001
49. $\frac{21}{1000}$
50. 0.021
51. \(\frac{321}{1000} \)
52. 0.321

53. 0.020
54. 0.002

55. 0.02
56. 0.2

A decimal number greater than 1 has one or more digits other than 0 to the left of the decimal point; 12.25, for example. To name 12.25, we mentally split it at the decimal point and name the whole-number part and fraction part separately.

As a class, read each of these numbers. Then use words to write each number on your paper.

57. 10.75
58. 12.5

59. 6.42
60. 10.1

61. 1.125
62. 2.05

Use digits to write each of these decimal numbers:

63. one and three tenths

64. two and twenty-five hundredths

65. three and twelve hundredths

66. four and five tenths

67. five and four hundredths

68. fifteen hundredths

69. five tenths

70. five hundredths
Activity: Decimal Numbers on Stopwatch Displays

Materials needed:

- stopwatch with digital display

Use a stopwatch to generate decimal numbers. Here we show a typical stopwatch display:

```
00:05.25
```

This display shows that 5.25 seconds passed between starting and stopping the watch.

Perform the activities in a and b. Vary the activities as desired.

a. Have students start and then stop the stopwatch as quickly as possible. Record each generated time on the board, and have students read the times aloud. Who stopped the watch in the quickest time?

b. Have students test time-estimating skills by starting the stopwatch and then, without looking, stopping the watch five seconds later. Read each generated time and have the class write each generated time with digits.

Part 3 Using Decimals to Name Part of a Square

We have used dimes, pennies, and mills to represent decimal numbers. We can also use base ten blocks or parts of a shaded square.

On the right is one whole square. It is divided into 100 equal parts, and 21 parts are shaded. The shaded part of the square can be named as the decimal number twenty-one hundredths (0.21) or as the fraction twenty-one hundredths \(\frac{21}{100}\).
Each of these squares is divided into 100 equal parts. Name the shaded part of each square as a decimal number and as a fraction:

71. 72.

Notice in problem 73 that half of the square is shaded. We see that the fraction $\frac{50}{100}$ equals $\frac{1}{2}$. The decimal number 0.50 also equals $\frac{1}{2}$, just as 0.50 equals $\frac{1}{2}$ of a dollar. In problem 74 we see that a fourth of the square is shaded. The decimal number 0.25 equals $\frac{1}{4}$, just as 0.25 equals $\frac{1}{4}$ of a dollar.

The square at right is divided into ten equal parts. One tenth of the square is shaded. We may write one tenth as a fraction $\left(\frac{1}{10}\right)$ or as a decimal number (0.1).

Name the shaded part of each square as a decimal number and as a fraction:

75. 76.
77.

Notice in problem 78 that half of the square is shaded. We see that \(\frac{5}{10} \) equals \(\frac{1}{2} \), just as \(\frac{50}{100} \) equals \(\frac{1}{2} \). The decimal number 0.5 also equals \(\frac{1}{2} \), just as 0.50 equals \(\frac{1}{2} \).

\[
\frac{1}{2} = \frac{5}{10} = \frac{50}{100}
\]

\[
\frac{1}{2} = 0.5 = 0.50
\]

79. Which of the following numbers does not equal one half?

A. \(\frac{5}{10} \)
B. 0.5
C. \(\frac{50}{100} \)
D. 0.05

Replace each circle with the correct comparison symbol:

80.

81.

82.

Lesson 41

Subtracting Across Zero • Missing Factors

WARM-UP

Facts Practice: Multiplication Facts: 2’s, 5’s, 9’s, Squares (Test E)

Mental Math:
Practice adding money amounts ending in 99¢, 98¢, or 95¢:

a. $4.65 + $2.99
 b. $3.86 + $1.95
 c. $6.24 + $2.98

Review:

a. 520 – 120
 b. 350 + 400 + 35
 c. 37 + 29 + 220

Problem Solving:

We can quickly add or subtract some numbers on a calendar. On a calendar select a number from the middle of the month. If we move straight up from that number one row, we subtract 7. If we move straight down one row, we add 7. We can add or subtract two other numbers if we move diagonally. Which numbers do we add or subtract when we move one row in these directions?

NEW CONCEPTS

Subtracting across zero

In the problem below we must regroup twice before we can subtract the ones digits.

\[
\begin{align*}
$405 & \\
\underline{- \hspace{1cm} $126} & \\
$279 &
\end{align*}
\]

We cannot exchange a ten for ones because there are no tens. So the first step is to exchange 1 hundred for 10 tens.

\[
\begin{align*}
\overset{3}{\underline{\hspace{1cm} $405}} & \\
\underline{- \hspace{1cm} $126} & \\
\overset{9}{\underline{\hspace{1cm} $279}} &
\end{align*}
\]

Now we have 10 tens, and we can exchange 1 of the tens for 10 ones.
Now we subtract.

\[
\begin{array}{c}
3 \ 9, \\
\hline
4 \ 0 \ 5 \\
\end{array}
\]

\[
\begin{array}{c}
\hline
1 \ 2 \ 6 \\
\end{array}
\]

\[
\begin{array}{c}
2 \ 7 \ 9 \\
\end{array}
\]

We can perform this regrouping in one step by looking at the numbers a little differently. We can think of the 4 and 0 as 40 ten-dollar bills (4 hundreds equals 40 tens).

\[
\begin{array}{c}
40 \text{ tens} \\
\hline
4 \ 0 \ 5 \\
\end{array}
\]

If we exchange one of the ten-dollar bills, then we will have 39 ten-dollar bills.

\[
\begin{array}{c}
3 \ 9, \\
\hline
4 \ 0 \ 5 \\
\end{array}
\]

\[
\begin{array}{c}
\hline
1 \ 2 \ 6 \\
\end{array}
\]

\[
\begin{array}{c}
2 \ 7 \ 9 \\
\end{array}
\]

Example 1
Tom had $3.00 and spent $1.23. How much money did he have left?

Solution
We change 3 dollars to 2 dollars and 10 dimes. Then we change 10 dimes to 9 dimes and 10 pennies.

\[
\begin{array}{c}
$3.00 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
$2.00 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
$2.00 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\hline
$1.77 \\
\end{array}
\]

We can also think of $3 as 30 dimes. Then we exchange 1 dime for 10 pennies.

\[
\begin{array}{c}
$3.00 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
$2.90 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
$1.77 \\
\end{array}
\]

We check our answer by adding.

\[
\begin{array}{c}
$1.23 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
$1.77 \\
\end{array}
\]

\[
$3.00 \ \text{check}
\]

Missing factors
Recall that numbers that are multiplied are called factors and the answer is called the product.

\[
\text{Factor} \times \text{factor} = \text{product}
\]

If we know one factor and the product, we can find the other factor.
Example 2 Find the missing factors:

(a) $5N = 40$
(b) $A \times 4 = 36$

Solution
(a) The expression $5N$ means “$5 \times N$.” Since $5 \times 8 = 40$, the missing factor is 8.

(b) Since $9 \times 4 = 36$, the missing factor is 9.

LESSON PRACTICE

Practice set
Subtract:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>3.00</td>
<td>b.</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>1.32</td>
<td>b.</td>
</tr>
</tbody>
</table>

| d. | 4.00 | e. | 304 | f. | 703 | g. | 128 |
| $-$ | 0.86 | $-$ | 156 | $-$ | 198 |

Find the missing factor in each problem:

| g. | $8W = 32$ | h. | $p \times 3 = 12$ |
| i. | $5m = 30$ | j. | $Q \times 4 = 16$ |

MIXED PRACTICE

Problem set
1. The large square represents 1. Write the shaded part of the square

 (a) as a fraction.

 (b) as a decimal number.

 (c) using words.

2. Takeshi had a dime, a quarter, and a penny. Write this amount using a dollar sign and a decimal point.

3. Donna opened a 1-gallon container of milk and poured 1 quart of milk into a pitcher. Then how many quarts of milk were left in the 1-gallon container?

4. Find the next three numbers in this counting sequence:

 ..., 4200, 4300, 4400, _____, _____, _____, ...
5. Use digits and a comparison symbol to show that the decimal number five tenths equals the fraction one half.

6. It is evening now. What time will it be 7 hours from now?

7. Find the missing factor: 5w = 45

8. The following was marked on the label of the juice container:

 2 qt (1.89 L)

 Use words to write 1.89 L.

9. What mixed number is illustrated by these shaded triangles?

10. Which letter below has no right angles?

11. Rewrite this addition problem as a multiplication problem:

 $1.25 + 1.25 + 1.25 + 1.25$

12. To what number is the arrow pointing on this inch scale?

13. A meterstick is how many centimeters long?

14. (a) Five dimes are what fraction of a dollar?

 (b) Write the value of five dimes using a dollar sign and a decimal point.

15. Compare:

 (a) $0.5 \bigcirc 0.50$

 (b) $\frac{1}{2} \bigcirc \frac{1}{4}$
Multiply:

16. (a) 3×8 (b) 3×7 (c) 3×6

17. (a) 4×8 (b) 4×7 (c) 4×6

18. $M \times 8$
 \[\frac{64}{} \]

19. $9 \times N$
 \[\frac{54}{} \]

20. $Z + 179$
 \[\frac{496}{} \]

21. 3.00
 \[\frac{-1.84}{} \]

22. 500
 \[\frac{-167}{} \]

23. W
 \[\frac{-297}{} \]

24. What are the next four numbers in this counting sequence?
 \[\ldots, 28, 21, 14, \ldots, \ldots, \ldots, \ldots \]

25. Use digits to write one million, fifty thousand.

26. If the area of a square is 36 square inches, then how long is each side of the square?

27. The distance from Ian’s house to school is 1.4 miles. Write 1.4 with words.
NEW CONCEPTS

Multiplying multiples of 10 and 100

The multiples of 10 are the numbers we say when we count by 10.

10, 20, 30, 40, 50, ...

Likewise, the multiples of 100 are the numbers we say when we count by 100.

100, 200, 300, 400, 500, ...

When multiplying by multiples of 10 and 100, we focus our attention on the first digit of the multiple.

Example 1

Find the product: 3×200

Solution

We will show three ways:

\[
\begin{array}{ccc}
200 & \text{2 hundred} & 200 \\
200 & \times & 3 \\
+ & 200 & \text{6 hundred} \\
\hline
600 & \text{600} \\
\end{array}
\]
We will look closely at the method on the right.

\[\begin{array}{c}
2 \ 0 \ 0 \\
\times \ 3 \\
\hline
6 \ 0 \ 0 \\
\end{array} \]

Two zeros here

\[2 \times 3 = 6 \]

Two zeros here

By focusing on the first digit and counting the number of zeros, we can multiply by multiples of 10 and 100 mentally.

Example 2

Multiply: \(6 \times 40 \)

Solution

We will show two ways. We can find the product mentally, whether we think of horizontal multiplication or vertical multiplication.

\[\begin{array}{c}
6 \times 40 = 240 \\
\end{array} \]

Rounding numbers to the nearest hundred

We have practiced rounding numbers to the nearest ten. Now we will learn to round numbers to the nearest hundred. To round a number to the nearest hundred, we choose the closest multiple of 100 (number ending in two zeros). A number line can help us understand rounding to the nearest hundred.

Example 3

(a) Round 472 to the nearest hundred.

(b) Round 472 to the nearest ten.

Solution

(a) The number 472 is between 400 and 500. Halfway between 400 and 500 is 450. Since 472 is greater than 450, it is closer to 500 than it is to 400. We see this on the number line below.

So 472 rounded to the nearest hundred is \(500 \).

(b) Counting by tens, we find that 472 is between 470 and 480.

Since 472 is closer to 470 than it is to 480, we round 472 to \(470 \).
Example 4 Round 5280 to the nearest hundred.

Solution Counting by hundreds, we find that 5280 is between 5200 and 5300. It is closer to 5300 than it is to 5200.

We can also round to the nearest hundred by focusing on the digit in the tens place, that is, the digit just to the right of the hundreds place.

If the digit in the tens place is less than 5, the digit in the hundreds place does not change. If the digit in the tens place is 5 or more, we increase the digit in the hundreds place by one. Whether rounding up or rounding down, the digits to the right of the hundreds place become zeros.

Example 5 Round 362 and 385 to the nearest hundred. Then add the rounded numbers.

Solution The number 362 is closer to 400 than it is to 300. The number 385 is also closer to 400 than it is to 300. So both 362 and 385 round to 400. Now we add.

\[400 + 400 = 800 \]

LESSON PRACTICE

Practice set Find each product:

\[
\begin{align*}
a. & \quad 50 \times 7 \\
b. & \quad 600 \times 3 \\
c. & \quad 7 \times 40 \\
d. & \quad 4 \times 800
\end{align*}
\]

Round each number to the nearest hundred:

\[
\begin{align*}
e. & \quad 813 \\
f. & \quad 685 \\
g. & \quad 427 \\
h. & \quad 2573 \\
i. & \quad \text{Round 297 and 412 to the nearest hundred. Then add the rounded numbers.} \\
j. & \quad \text{Round 623 and 287 to the nearest hundred. Then subtract the smaller rounded number from the larger rounded number.}
\end{align*}
\]
Problem set

1. On 1-cm grid paper, draw a square with sides 5 cm long.
 (a) What is the perimeter of the square?
 (b) What is the area of the square?

2. Wilbur had sixty-seven grapes. He ate some grapes. Then he had thirty-eight grapes. How many grapes did Wilbur eat?

3. The distance from Whery to Radical is 42 km. The distance from Whery to Appletown through Radical is 126 km. How far is it from Radical to Appletown? Solve this problem using an addition pattern.

4. It is afternoon. What time will it be in half an hour?

5. Write the next three numbers in this sequence of perfect squares:
 1, 4, 9, 16, 25, 36, 49, _____, _____, _____, ...

6. (a) Round 673 to the nearest hundred.
 (b) Round 673 to the nearest ten.

7. How many squares are shaded?

8. (a) Find the length of this screw to the nearest quarter inch.
 (b) Find the length of this screw to the nearest centimeter.

9. Rewrite this addition problem as a multiplication problem:
 $2.50 + $2.50 + $2.50

10. Are the line segments in a plus sign parallel or perpendicular?
11. To what number is the arrow pointing?

12. Use the digits 4, 7, and 8 once each to write an odd number greater than 500.

13. 6×80

14. 7×700

15. 9×80

16. 7×600

17. $Z + 338$

18. $\$4.06 - \2.28

19. $W \times 6$

20. $N - 422 = 305$

21. $55 + 555 + 378$

22. (a) Use words to write 5280.

 (b) Which digit in 5280 is in the tens place?

23. (a) Ten nickels are what fraction of a dollar?

 (b) Write the value of ten nickels using a dollar sign and a decimal point.

24. Compare:

 (a) $0.5 \bigcirc \frac{1}{2}$

 (b) $\frac{1}{4} \bigcirc \frac{1}{10}$

25. What is the sum of three squared and four squared?

26. Which of these numbers does not describe the shaded part of this rectangle?

 A. $\frac{5}{10}$
 B. $\frac{1}{2}$
 C. 5.0
 D. 0.5

27. The decimal number 0.25 equals $\frac{1}{4}$. Write 0.25 with words.
Adding and Subtracting Decimal Numbers, Part 1

WARM-UP

Facts Practice: Multiplication Facts: 2’s, 5’s, 9’s, Squares (Test E)

Mental Math:
Subtract a number ending in 5 from a number ending in zero:

- a. 80 − 5
- b. 80 − 25 (Subtract 20. Then subtract 5 more.)

Review:
- c. $6.23 + $2.98
- d. 340 + 26 + 216
- e. 65 + 8 + 200

Patterns:
Counting by halves, we say, “one half, one, one and one half, two,” Count by halves from one half to ten. Then write this sequence on a piece of paper. What number is halfway between two and five?

NEW CONCEPT

To add or subtract money amounts written with a dollar sign, we add or subtract digits with the same place value. We line up the digits with the same place value by lining up the decimal points.

Example 1

<table>
<thead>
<tr>
<th>(a) $3.45 + $0.75</th>
<th>(b) $5.35 − $2</th>
</tr>
</thead>
</table>

Solution

(a) First we line up the decimal points in order to line up places with the same place value. Then we add, remembering to write the dollar sign and the decimal point.

\[
\begin{align*}
3.45 \\
+ 0.75 \\
\hline
4.20
\end{align*}
\]

(b) First we put a decimal point and two zeros behind the $2. $2 means $2.00.

Now we line up the decimal points and subtract.

\[
\begin{align*}
5.35 \\
− 2.00 \\
\hline
3.35
\end{align*}
\]
Example 2 \$3.75 + \$4 + 15¢

Solution Before we add, we make sure that all the money amounts have the same form. We make these changes:

\[
\begin{array}{c|c}
\$4 & \rightarrow \$4.00 \\
15¢ & \rightarrow \$0.15 \\
\end{array}
\]

Then we line up the decimal points and add.

\[
\begin{array}{l}
\$3.75 \\
+ \$4.00 \\
+ \$0.15 \\
\hline
\$7.90 \\
\end{array}
\]

We add or subtract decimal numbers that are not money amounts the same way. We line up the decimal points and then add or subtract.

Example 3 (a) 0.2 + 0.5
(b) 3.47 – 3.41

Solution

(a) We line up the decimal points and add.

\[
\begin{array}{l}
0.2 \\
+ 0.5 \\
\hline
0.7 \\
\end{array}
\]

(b) We line up the decimal points and subtract.

\[
\begin{array}{l}
3.47 \\
- 3.41 \\
\hline
0.06 \\
\end{array}
\]

Example 4 One gallon of milk is about 3.78 liters. Two gallons of milk is about how many liters?

Solution We add 3.78 liters to 3.78 liters to find about how many liters are in two gallons of milk.

\[
\begin{array}{l}
3.78 \text{ L} \\
+ 3.78 \text{ L} \\
\hline
7.56 \text{ L} \\
\end{array}
\]

LESSON PRACTICE

Practice set Find each sum or difference:

a. \$6.32 + \$5
b. \$3.25 – \$1.75

c. 46¢ + 64¢
d. 98¢ – 89¢

e. \$1.46 + 87¢
f. 76¢ – \$0.05

g. 3.47 + 3.41
h. 0.75 – 0.50
i. 0.50 + 1.75
j. 4.25 − 3.75
k. 5.6 + 5.6
l. 2.75 − 1.70

MIXED PRACTICE

Problem set

1. One hundred pennies are separated into two piles. In one pile there are thirty-five pennies. How many pennies are in the other pile?

2. Draw a rectangle that is 3 cm long and 3 cm wide.
 (a) What is the perimeter of the rectangle?
 (b) What is the area of the rectangle?

3. Pedro opened a 1-gallon bottle that held about 3.78 liters of milk. He poured about 1.50 liters of milk into a pitcher. About how many liters of milk were left in the bottle?

4. San Francisco is 400 miles north of Los Angeles. Santa Barbara is 110 miles north of Los Angeles. Sam drove from Los Angeles to Santa Barbara. How many miles does he still have to drive to reach San Francisco?

5. (a) Round 572 to the nearest hundred.
 (b) Round 572 to the nearest ten.

6. Write the shaded part of this square
 (a) as a fraction.
 (b) as a decimal number.
 (c) using words.

7. Are the rails of a railroad track parallel or perpendicular?

8. Draw a square to show 3×3. Then shade two ninths of the square.

9. It is morning. What time was it 2 hours ago?
10. To what number is the arrow pointing?

11. \(2.45 + 4.50\)

12. \(\$3.25 - \$2.47\)

13. \(\$2.15 + \$3 + 7\)¢

14. \(3.75 - 2.50\)

15. \(\frac{507}{456} - \frac{N}{423}\)

16. \(\frac{N}{207}\)

17. \(\$5.00 - \$3.79\)

18. \(6 \times 80\)

19. \(4 \times 300\)

20. \(7 \times 90\)

21. \(8N = 32\)

22. \(\sqrt{100}\)

23. Draw a line segment 2 inches long. Then measure the line segment with a centimeter ruler. Two inches is about how many centimeters?

24. The population of the city was about 1,080,000. Use words to write that number.

25. Which of these metric units would probably be used to describe the height of a tree?
 A. millimeters
 B. centimeters
 C. meters
 D. kilometers

26. Sarah has a 2-liter bottle full of water and an empty half-gallon carton. If she pours water from the bottle into the carton, what will happen?
 A. The bottle will be empty before the carton is full.
 B. The carton will be full before the bottle is empty.
 C. When the carton is full, the bottle will be empty.

27. Here is a list of selling prices for five houses. Arrange the prices in order from highest selling price to lowest selling price.

 $179,500
 $248,000
 $219,900
 $315,000
 $232,000
Lesson 44

Multiplying Two-Digit Numbers, Part 1

WARM-UP

Facts Practice: Multiplication Facts: Memory Group (Test F)

Mental Math:
Subtract a number ending in 5 from a number ending in zero:

a. 70 − 5 b. 70 − 45 c. 370 − 125

Review:

d. $5.96 + $3.95 e. 76 + 9 + 200 f. 560 + 24 + 306

Vocabulary:
Copy these two patterns on a piece of paper. In each of the six boxes write either “factor” or “product.”

NEW CONCEPT

If there are 21 children in each classroom, then how many children are in 3 classrooms?

Instead of finding 21 + 21 + 21, we will solve this problem by multiplying 21 by 3. Below we show two ways to do this. The first method is helpful when multiplying mentally. The second method is a quick way to multiply using pencil and paper.

Method 1:
Think: 21 is the same as 20 + 1
Multiply:

\[
\begin{array}{c}
20 \\
\times 3 \\
\hline
60
\end{array} \quad \begin{array}{c}
1 \\
\times 3 \\
\hline
3
\end{array}
\]

Add: 60 + 3 = 63

Method 2:
Multiply ones; then multiply tens.

\[
\begin{array}{c}
21 \\
\times 3 \\
\hline
63
\end{array}
\]
Example Multiply: 42 \times 3

Solution We write 42 on top and 3 underneath, directly below the 2. We multiply 2 by 3 to get 6. Then we multiply 4 (for 40) by 3 to get 12. The product is 126.

\[
\begin{array}{c}
42 \\
\times 3 \\
\hline
126
\end{array}
\]

LESSON PRACTICE

Practice set Find each product:

a. 31 \times 2

b. 31 \times 4

c. 42 \times 4

d. 30 \times 2

e. 30 \times 4

f. 24 \times 0

MIXED PRACTICE

Problem set 1. The 1-gallon container of milk held 3.78 L of milk. Use words to write 3.78 L.

2. Juan compared two numbers. The first number was forty-two thousand, three hundred seventy-six. The second number was forty-two thousand, eleven. Use digits and a comparison symbol to show the comparison.

3. The ticket cost $3.25. The man paid for the ticket with a $5 bill. How much money should he get back?

4. Nine squared is how much more than the square root of nine?

5. Find the missing factor: 8M = 48

6. Eight fluid ounces of water is one cup of water. How many fluid ounces of water is a pint of water?

7. How many circles are shaded?
8. Use an inch ruler to find the diameter of this circle:

9. Compare:
 (a) $-5 \bigcirc -2$
 (b) $4 \times 60 \bigcirc 3 \times 80$

10. $4.03 - 1.68$
 11. $4.33 + 5.28$
 12. $5.22 - 2.46$
 13. $7.08 - 0.59$

14. 21×6
 15. 40×7
 16. 73×2
 17. 51×6

18. $2 + 47\,\text{¢} + 21\,\text{¢}$
 19. $8.7 - 1.2$

20. $62 - N = 14$
 21. $N - 472 = 276$

22. Write this addition problem as a multiplication problem:
 \[2.1 + 2.1 + 2.1 + 2.1 + 2.1 + 2.1\]

23. (a) Which digit in 1760 is in the hundreds place?
 (b) Use words to write 1760.
 (c) Round 1760 to the nearest hundred.

24. Round 738 and 183 to the nearest hundred. Then add the rounded numbers.

25. Add the decimal number one and fifty hundredths to three and twenty-five hundredths. What is the sum?

26. If the area of this rectangle is 6 sq. cm, then the length of the rectangle is which of the following?
 A. 3 cm B. 4 cm
 C. 10 cm D. 12 cm

27. (a) Is 5.75 closer to 5 or to 6?
 (b) Is 5.75 closer to 5 or to 6?
Parentheses •
Associative Property •
Naming Lines and Segments

WARM-UP

Facts Practice: Multiplication Facts: Memory Group (Test F)

Mental Math:
Subtract a number ending in 5 from a number ending in zero:

a. $0.80 − 0.35
 b. $1.60 − 0.25
 c. $4.50 − $1.15

Review:

d. $6.28 + $0.99
 e. 68 + 6 + 20
 f. 43 + 29 + 310

Patterns:

This is the sequence of numbers we say when we count by fourths. Copy this sequence on your paper, and continue the sequence to the whole number 5.

\[
\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, 1\frac{1}{4}, 1\frac{1}{2}, 1\frac{3}{4}, 2, \ldots
\]

NEW CONCEPTS

Parentheses When parentheses are in an arithmetic problem, we work inside the parentheses first.

\[2 \times (3 + 4)\]

This expression means “2 times the sum of 3 and 4.” We first add 3 and 4 and get 7. Then we multiply 2 by 7. The answer is 14.

Example 1 (3 × 4) + 5

Solution This expression means “add 5 to the product of 3 and 4.” First we multiply 3 by 4 and get 12. Then we add 5 and 12.

\[12 + 5 = 17\]

Example 2 3 × (4 + 5)

Solution This expression means “3 times the sum of 4 and 5.” We add 4 and 5 and get 9. Then we multiply 9 by 3.

\[3 \times 9 = 27\]
Associative property

If three numbers are to be added, we start by adding two of the numbers. Then we add the third number. It does not matter which two numbers we add first—the sum will be the same.

\[
5 + (4 + 2) = 11 \quad (5 + 4) + 2 = 11
\]

This property of addition is called the **associative property**.

Example 3

Compare: \(3 + (4 + 5) \bigcirc (3 + 4) + 5\)

Solution

Both sides of the comparison equal 12.

\[
3 + (4 + 5) \bigcirc (3 + 4) + 5
\]
\[
3 + 9 \bigcirc 7 + 5
\]
\[
12 \bigcirc 12
\]

We replace the circle with an equal sign.

\[
3 + (4 + 5) = (3 + 4) + 5
\]

The associative property also applies to multiplication. We will illustrate the associative property with a stack of blocks. On the left we see 12 blocks in front \((3 \times 4)\). There are also 12 blocks in back. So we can multiply 12 by 2 to find the total number of blocks.

On the right we see 8 blocks on top \((4 \times 2)\). There are 3 layers of blocks. So we can multiply 8 by 3 to find the total number of blocks.

\[
(3 \times 4) \times 2 = 24 \quad 3 \times (4 \times 2) = 24
\]

Example 4

Compare: \(3 \times (2 \times 5) \bigcirc (3 \times 2) \times 5\)

Solution

Both sides of the comparison equal 30.

\[
3 \times (2 \times 5) \bigcirc (3 \times 2) \times 5
\]
\[
3 \times 10 \bigcirc 6 \times 5
\]
\[
30 \bigcirc 30
\]

We replace the circle with an equal sign.

\[
3 \times (2 \times 5) = (3 \times 2) \times 5
\]
Naming lines and segments

Recall that a line has no end. A line goes on and on in both directions. When we draw a line, we can use arrowheads to show that the line continues. One way to identify a line is to name two points on the line.

This line is named “line AB” or “line BA.” We can use the symbols \overline{AB} or \overline{BA} to write the name of this line. The small line above the letters AB and BA replaces the word line. To read \overline{AB}, we say, “line AB.”

Recall that a segment is part of a line. A segment has two endpoints. We name a segment by naming its endpoints. Either letter may come first.

We may use the symbols \overline{RS} or \overline{SR} to write the name of this segment. The small segment over the letters replaces the word segment. To read \overline{RS}, we say, “segment RS.”

Example 5

Which segment in this triangle appears to be the longest?

Solution

Side \overline{PQ} appears to be the longest side, so our answer is \overline{PQ} (or \overline{QP}).

Example 6

The length of \overline{AB} is 3 cm. The length of \overline{BC} is 4 cm. What is the length of \overline{AC}?

Solution

Two short segments can form a longer segment. From A to B is one segment; from B to C is a second segment. Together they form a third segment, segment AC. We are told the lengths of \overline{AB} and \overline{BC}. If we add these lengths, their sum will equal the length of \overline{AC}.

$$3 \text{ cm} + 4 \text{ cm} = 7 \text{ cm}$$

The length of \overline{AC} is 7 cm.
LESSON PRACTICE

Practice set

a. $8 - (4 + 2)$
b. $(8 - 4) + 2$

c. $9 - (6 - 3)$
d. $(9 - 6) - 3$

e. $10 + (2 \times 3)$
f. $3 \times (10 + 20)$

g. Compare: $2 + (3 + 4) \bigcirc (2 + 3) + 4$

h. Compare: $3 \times (4 \times 5) \bigcirc (3 \times 4) \times 5$

i. What property of addition and multiplication is shown by the comparisons in problems g and h?

j. The length of \overline{RS} is 4 cm. The length of \overline{RT} is 10 cm. What is the length of \overline{ST}? (*Hint:* You will need to subtract.)

k. Which segment in this figure appears to be the diameter of the circle?

MIXED PRACTICE

Problem set

1. Use the numbers 0.5, 0.6, and 1.1 to write two addition facts and two subtraction facts.

2. A whole hour is 60 minutes. How many minutes is half of an hour?

3. The space shuttle orbited 155 miles above the earth. The weather balloon floated 15 miles above the earth. The space shuttle was how much higher than the weather balloon?

4. How much change should you get back if you give the clerk $5.00 for a box of cereal that costs $3.85?

5. Write 12.5 using words.
6. Use digits and symbols to show that negative sixteen is less than negative six.

7. It is morning. What time was it 20 minutes ago?

8. Write 4060 in expanded form. Then use words to write the number.

9. How many circles are shaded?

10. Compare:
(a) 2 quarters ○ half-dollar
(b) 2,100,000 ○ one million, two hundred thousand

11. Find the missing factor: \(6W = 42\)

12. (a) Use an inch ruler to measure this line segment to the nearest inch.
(b) Use a centimeter ruler to measure this line segment to the nearest centimeter.

13. Compare: \(12 - (6 - 3)\) ○ \((12 - 6) - 3\)

14. Look at problem 13 and your answer to the problem. Does the associative property apply to subtraction? Why or why not?

15. \(4.07 - 2.26\) \(\hspace{1cm}\) \(5.02 - 2.47\) \(\hspace{1cm}\) \(5.83 - 2.97\) \(\hspace{1cm}\) \(3.92 + 5.14\)

16. \(\frac{42}{3}\) \(\hspace{1cm}\) \(\frac{83}{2}\) \(\hspace{1cm}\) \(\frac{40}{4}\) \(\hspace{1cm}\) \(\frac{41}{6}\)

23. \(\$2.75 + 50\text{¢} + \$3\)
24. \(\$3.50 + 1.75\)
25. Draw a rectangle that is 2 in. by 1 in.
 (Inv. 2, Inv. 3)
 (a) The perimeter of the rectangle is how many inches?
 (b) The area of the rectangle is how many square inches?

26. Which of the following segments is not a radius of the circle?
 (21, 45)
 A. \(\overline{RS} \) B. \(\overline{RM} \)
 C. \(\overline{MT} \) D. \(\overline{MS} \)

27. Irena finished the first problem in 34 seconds. She finished the second problem in 28 seconds. The first problem took how much longer to finish than the second problem?
Division

WARM-UP

Facts Practice: Multiplication Facts: Memory Group (Test F)

Mental Math:
Subtract a number ending in 50 from a number ending in two zeros:

- a. 300 – 50
- b. $4.00 –$0.50
- c. $5.00 –$1.50

Review:
- d. $7.90 +$1.95
- e. 536 + 45
- f. 59 + 6 + 210

Problem Solving:
The digits 1, 2, 3, and 4, in order, can be written with an equal sign and a times sign to form a multiplication fact.

\[12 = 3 \times 4 \]

Write another multiplication fact using four different digits written in order.

NEW CONCEPT

Remember that multiplication problems have three numbers. The multiplied numbers are factors, and the answer is the product.

\[\text{Factor} \times \text{factor} = \text{product} \]

If we know the two factors, we multiply to find the product. If the factors are 4 and 3, the product is 12.

\[4 \times 3 = 12 \]

If we know one factor and the product, we can find the other factor.

\[4 \times W = 12 \quad N \times 3 = 12 \]

We can use division to find a missing factor. Division “undoes” a multiplication.

We know how to use a multiplication table to find the product of 3 and 4. We locate the proper row and column, and then find the product where they meet.
We can also use a multiplication table to find a missing factor. If we know that one factor is 3 and the product is 12, we look across the row that starts with 3 until we see 12. Then we look up to the top of the column containing 12. There we find 4, which is the missing factor.

\[
\begin{array}{c}
\text{3} \\
\text{0} \\
\text{3} \\
\text{6} \\
\text{9} \\
\text{12} \\
\end{array}
\begin{array}{c}
\text{4} \\
\end{array}
\]

We write the numbers 3, 4, and 12 with a division box this way:

\[
\begin{array}{c}
4 \\
3 \overline{)12}
\end{array}
\]

We say, “Twelve divided by three is four.”

Example 1 Divide: 4\(\overline{)32}\)

Solution We want to find the missing factor. We think, “Four times what number is thirty-two?” We find the missing factor using the multiplication table below. First we find the row beginning with 4. Then we follow this row across until we see 32. Then we look up this column to find that the answer is 8.

<table>
<thead>
<tr>
<th>Multiplication Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1 0 1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>2 0 2 4 6 8 10 12 14 16 18 20 22 24</td>
</tr>
<tr>
<td>3 0 3 6 9 12 15 18 21 24 27 30 33 36</td>
</tr>
<tr>
<td>\textbf{4} 0 4 8 12 16 20 24 28 32 36 40 44 48</td>
</tr>
<tr>
<td>5 0 5 10 15 20 25 30 35 40 45 50 55 60</td>
</tr>
<tr>
<td>6 0 6 12 18 24 30 36 42 48 54 60 66 72</td>
</tr>
<tr>
<td>7 0 7 14 21 28 35 42 49 56 63 70 77 84</td>
</tr>
<tr>
<td>8 0 8 16 24 32 40 48 56 64 72 80 88 96</td>
</tr>
<tr>
<td>9 0 9 18 27 36 45 54 63 72 81 90 99 108</td>
</tr>
<tr>
<td>10 0 10 20 30 40 50 60 70 80 90 100 110 120</td>
</tr>
<tr>
<td>11 0 11 22 33 44 55 66 77 88 99 110 121 132</td>
</tr>
<tr>
<td>12 0 12 24 36 48 60 72 84 96 108 120 132 144</td>
</tr>
</tbody>
</table>
Example 2 Divide: \(2 \overline{)18} \)

Solution We search for the number that goes above the division box. We think, “Two times what number is eighteen?” We remember that \(2 \times 9 = 18 \), so the answer is 9. We write “9” above the 18, like this:

\[
\begin{array}{c}
9 \\
2 \overline{)18}
\end{array}
\]

LESSON PRACTICE

Practice set Divide:

- **a.** \(2 \overline{)12} \)
- **b.** \(3 \overline{)21} \)
- **c.** \(4 \overline{)20} \)
- **d.** \(5 \overline{)30} \)
- **e.** \(6 \overline{)42} \)
- **f.** \(7 \overline{)28} \)
- **g.** \(8 \overline{)48} \)
- **h.** \(9 \overline{)36} \)

MIXED PRACTICE

Problem set 1. Four hundred ninety-five oil drums were on the first train. Seven hundred sixty-two oil drums were on the first two trains combined. How many oil drums were on the second train?

2. The decimal number three and seventy-eight hundredths is how much more than two and twelve hundredths?

3. Cyrus baled 82 bales of hay on the first day. He baled 92 bales of hay on the second day. He baled 78 bales of hay on the third day. How many bales of hay did he bale in all three days?

4. (a) Round 786 to the nearest hundred.
 (b) Round 786 to the nearest ten.

5. Draw and shade rectangles to show the number \(2 \frac{1}{3} \).

6. The first five odd numbers are 1, 3, 5, 7, and 9.
 (a) What is their sum?
 (b) What is the square root of their sum?

7. It is morning. What time was it twelve hours ago?

8. What type of angle is formed by the hands of this clock?
9. (a) Use an inch ruler to find the length of this rectangle to the nearest quarter inch.

(b) Which segment is parallel to \(\overline{AB} \)?

![Diagram of rectangle with labeled points A, B, D, C]

10. Katy took two dozen BIG steps. About how many meters did she walk?

11. To what mixed number is the arrow pointing?

![Arrow pointing to a mixed number]

12. \(64 + (9 \times 40) \)

13. \($6.25 + 39¢ + $3 \)

14. \(\frac{4.02}{(41)} - \frac{2.47}{(41)} \)

15. \(\frac{5.00}{(41)} - \frac{2.48}{(41)} + \frac{2.5}{(24, 43)} \)

16. \(N \)

17. \(\frac{4.3}{(16, 43)} - \frac{C}{(44)} \times \frac{3}{(44)} \)

18. \(\frac{42}{(44)} \times \frac{5}{(44)} \)

19. \(\frac{81}{(44)} \times \frac{5}{(44)} \)

20. \(\frac{6}{(46)} \overline{30} \)

21. \(\frac{7}{(46)} \overline{21} \)

22. \(\frac{8}{(46)} \overline{56} \)

23. \(\frac{9}{(46)} \overline{81} \)

24. \(\frac{7}{(46)} \overline{28} \)

25. \(\frac{3}{(46)} \overline{15} \)

26. Draw a rectangle 3 in. long and 1 in. wide.

(a) What is its perimeter?

(b) What is its area?

27. Rosario noticed that the distance from the pole in the center of the tetherball circle to the painted circle was about six feet. What was the approximate radius of the tetherball circle?

A. 12 ft B. 4 yd C. 3 ft D. 2 yd
LESSON 47

Other Ways to Show Division

WARM-UP

Facts Practice: Multiplication Facts: Memory Group (Test F)

Mental Math:
Add hundreds, then tens, and then ones, regrouping tens:

a. 365 + 240 b. 456 + 252 c. 584 + 41

Review:

d. $6.00 − $1.50 e. $4.56 + $1.99 f. 47 + 29 + 100

Problem Solving:

Counting by fourths we say, “one fourth, one half, three fourths, one,” Count by fourths from one fourth to four. Write this sequence on a sheet of paper. Which number is between 2\(\frac{1}{2}\) and 3? Which number is halfway between 3 and 4?

NEW CONCEPT

We can show division in more than one way. Here we show “fifteen divided by three” three different ways:

\[\begin{align*}
3 \div 15 &= 15 \div 3 = \frac{15}{3} \\
\end{align*} \]

The first way uses a division box. The second way uses a division sign. The third way uses a division bar.

Example 1 Use digits and division symbols to show “twenty-four divided by six” three ways.

Solution

\[\begin{align*}
6 \div 24 &= 24 \div 6 = \frac{24}{6} \\
\end{align*} \]

Example 2 Solve:

(a) \(28 \div 4\)

(b) \(\frac{27}{3}\)

Solution

(a) We read this as “twenty-eight divided by four.” It means the same thing as \(4\)\(\overline{28}\).

\[28 \div 4 = 7\]

(b) We read this as “twenty-seven divided by three.” It means the same thing as \(3\)\(\overline{27}\).

\[\frac{27}{3} = 9\]
A multiplication fact has three numbers. With these three numbers we can form one other multiplication fact and two division facts.† Together, all four facts form a multiplication and division fact family.

\[
\begin{align*}
6 \times 4 &= 24 & 24 \div 4 &= 6 \\
4 \times 6 &= 24 & 24 \div 6 &= 4
\end{align*}
\]

Example 3 Use the numbers 3, 5, and 15 to write two multiplication facts and two division facts.

Solution

\[
\begin{align*}
3 \times 5 &= 15 & 15 \div 5 &= 3 \\
5 \times 3 &= 15 & 15 \div 3 &= 5
\end{align*}
\]

LESSON PRACTICE

Practice set Divide:

\[
\begin{align*}
a. \quad 49 \div 7 \\b. \quad 45 \div 9 \\c. \quad 40 \div 8 \\
d. \quad \frac{36}{6} \\e. \quad \frac{32}{8} \\f. \quad \frac{27}{3}
\end{align*}
\]

Use digits and three different division symbols to show:

\[
\begin{align*}
g. \quad \text{twenty-seven divided by nine} \\
h. \quad \text{twenty-eight divided by seven} \\
i. \quad \text{Use the numbers 12, 3, and 4 to write two multiplication facts and two division facts.}
\end{align*}
\]

MIXED PRACTICE

Problem set

1. Brand A costs two dollars and forty-three cents. Brand B costs five dollars and seven cents. Brand B costs how much more than Brand A?

2. The numbers 3, 4, and 12 form a multiplication and division fact family.

\[
\begin{align*}
3 \times 4 &= 12 & 12 \div 4 &= 3 \\
4 \times 3 &= 12 & 12 \div 3 &= 4
\end{align*}
\]

Write four multiplication/division facts using the numbers 4, 5, and 20.

3. What is the sum of the decimal numbers two and three tenths and eight and nine tenths?

†This statement assumes that zero is not a factor and that the factors are different numbers.
4. Use the digits 1, 5, 6, and 8 once each to write an even number greater than 8420.

5. (a) Compare: \(1\frac{1}{2} \bigcirc 1.75 \)

(b) Use words to write the greater of the two numbers you compared in part (a).

6. Chad will use square floor tiles that are one foot on each side to cover a hallway that is eight feet long and four feet wide. How many floor tiles will Chad need?

7. To what number is the arrow pointing?

8. (a) Five dimes are what fraction of a dollar?

(b) Write the value of five dimes using a dollar sign and a decimal point.

9. The length of segment \(PQ \) is 2 cm. The length of segment \(PR \) is 11 cm. How long is segment \(QR \)?

10. Which segment in this triangle appears to be perpendicular to segment \(AC \)?

11. Round 3296 to the nearest hundred.

12. Use words to write 15,000,000.

13. \(95 - (7 \times \sqrt{64}) \)

14. \(2.53 \ 45\text{¢} \ + \ 3 \)

15. \(\frac{N}{2.3} = 5.1 \times 3 \)

16. \(\frac{40}{5} \)

17. \(\frac{51}{5} \)
18. \[28 \div 7\]
19. \[81 \div 9\]
20. \[35 \div 7\]
21. \[16 \div 4\]

22. \[\frac{28}{4}\]
23. \[\frac{42}{7}\]
24. \[\frac{48}{8}\]
25. \[\frac{45}{5}\]

26. Which of these does not show 24 divided by 4?
 A. \(24\overline{4}\)
 B. \(\frac{24}{4}\)
 C. 24 ÷ 4
 D. 4\(\overline{24}\)

27. (a) Is $12.90 closer to $12 or to $13?
(b) Is 12.9 closer to 12 or to 13?
LESSON 48

Multiplying Two-Digit Numbers, Part 2

WARM-UP

Facts Practice: Multiplication Facts: Memory Group (Test F)

Mental Math:
Add hundreds, then tens, and then ones, regrouping tens:

a. 466 + 72
 b. $3.59 + $2.50
 c. 572 + 186

Review:

d. 400 + 160 + 30
 e. $4.60 + $2.45
 f. $6.24 + $2.98

Problem Solving:

The hands of a clock point in opposite directions at 6:00. They also point in opposite directions at about 12:33. Name nine more times the hands of a clock point in opposite directions. (Answers will be approximate.)

NEW CONCEPT

In Lesson 44 we practiced multiplying two-digit numbers. First we multiplied the digit in the ones place. Then we multiplied the digit in the tens place.

\[
\begin{array}{c}
\text{MULTIPLY ONES} \\
12 \\
\times 4 \\
\hline
8 \\
\end{array}
\quad \begin{array}{c}
\text{MULTIPLY TENS} \\
12 \\
\times 4 \\
\hline
48 \\
\end{array}
\]

Often when we multiply the ones, the result is a two-digit number. When this happens, we do not write both digits below the line. Instead we write the second digit below the line in the ones column and carry the first digit above the tens column.

Seven times two is 14. We write 12

\[
\begin{array}{c}
12 \\
\times 7 \\
\hline 84 \\
\end{array}
\]

Then we multiply the tens digit and add the digit that we carried above this column.

Seven times one is seven, plus one is eight.

\[
\begin{array}{c}
12 \\
\times 7 \\
\hline 84 \\
\end{array}
\]
We can demonstrate this multiplication with $10 bills and $1 bills. To do this, we count out $12 seven times. We use one $10 bill and two $1 bills to make each set of $12. When we are finished, we have seven $10 bills and fourteen $1 bills.

We exchange ten $1 bills for one $10 bill. We add this bill to the stack of $10 bills, giving us a new total of eight $10 bills and four $1 bills.

Example Find the product: 8×64

Solution We write the two-digit number above the one-digit number. We think of 64 as 6 tens and 4 ones. We multiply 8 by 4 ones and get 32 ones (32). We write the 2 of 32 below the line. The 3 of 32 is 3 tens, so we write “3” above the tens column.

Then we multiply 8 by 6 tens, which is 48 tens. We add the 3 tens to this and get 51 tens. We write “51” below the line. The product is 512.

LESSON PRACTICE

Practice set Find each product:

a. 16×4

b. 24×3

c. 45×6

d. 53×7

e. 35×8

f. 64×9

g. Use money manipulatives to demonstrate this multiplication:

14×3
Problem set

1. Write four multiplication/division facts using the numbers 3, 5, and 15.

2. There were four hundred seventy-two birds in the first flock. There were one hundred forty-seven birds in the second flock. How many fewer birds were in the second flock?

3. Rae hiked forty-two miles. Then she hiked seventy-five more miles. How many miles did she hike in all?

4. Use the digits 1, 3, 6, and 8 once each to write an odd number between 8000 and 8350.

5. Write 306,020 in expanded form. Then use words to write the number.

6. Draw and shade circles to show the number $\frac{2}{8}$.

7. How many feet are in 1 mile?

8. What is the perimeter of this figure?

9. A meterstick broke into two pieces. If one piece was 54 cm long, how long was the other piece?

10. Find the length of segment BC.

11. $100 + (4 \times 50)$

12. $\$3.25 + 37¢ + \3

13. $\sqrt{4} \times \sqrt{9}$
14. 33 \(\times \) 6
15. 24 \(\times \) 5
16. 90 \(\times \) 6
17. 42×7

18. $5.06 - 2.28$
19. $1.45 + 2.70$
20. $3.25 - 1.50$
21. $14 + 28$

22. $28 \div 7$
23. $5 \div 35$
24. $6 \div 54$
25. $63 \div 7$

26. A rectangle has an area of 12 sq. in. Which of these could not be the length and width of the rectangle?
 A. 4 in. by 3 in.
 B. 6 in. by 2 in.
 C. 12 in. by 1 in.
 D. 4 in. by 2 in.

27. Which property of multiplication is shown here?
 \(5 \times (2 \times 7) = (5 \times 2) \times 7 \)
LESSON

49

Stories About Equal Groups, Part 1

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:
Add hundreds, then tens, and then ones, regrouping tens and ones:

a. 258 + 154
b. $367 + $265
c. 587 + 354

Review:

d. 54 + 19 + 110
e. 620 + 40 + 115
f. 480 − 115

Problem Solving:

From point A to point B is 1 1/4 inches. How many inches is it from point B to point C?

NEW CONCEPT

We have found that some story problems have an addition pattern. The addition pattern has three numbers. If we know two of the numbers, we can find the third number.

\[
\begin{align*}
5 \text{ marbles} \\
+ 7 \text{ marbles} \\
\hline
12 \text{ marbles}
\end{align*}
\]

Some story problems have a subtraction pattern. The subtraction pattern has three numbers. If we know two of the numbers, we can find the third number.

\[
\begin{align*}
12 \text{ marbles} \\
- 7 \text{ marbles} \\
\hline
5 \text{ marbles}
\end{align*}
\]

Some story problems have a multiplication pattern. The multiplication pattern also has three numbers. If we know two of the numbers, we can find the third number.

\[
\begin{align*}
8 \text{ marbles in each bag} \\
\times 3 \text{ bags} \\
\hline
24 \text{ marbles}
\end{align*}
\]
Stories that have a multiplication pattern are often “equal groups” stories. Look at this pattern carefully:

\[
\text{Number in each group} \times \text{Number of groups} = \text{Total}
\]

Number of groups \times \text{number in each group} = \text{total}

We multiply the number in each group by the number of groups to find the total. If we want to find the number of groups or the number in each group, we divide. Here is a diagram we can use for “equal groups” stories:

![Diagram]

Example 1
Ted has 5 cans of tennis balls. There are 3 tennis balls in each can. How many tennis balls does Ted have?

Solution
The words *in each* are a clue to this problem. The words *in each* usually mean that the problem is an “equal groups” problem.

We write the number and the words that go with *in each* on the first line. This is the number in each group. We write the number and word *5 cans* as the number of groups. To find the total, we multiply.

<table>
<thead>
<tr>
<th>Number in each group</th>
<th>Total in all groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Pattern
3 tennis balls in each can \times 5 cans = 15 tennis balls

Here we solve the problem sideways:

Pattern:
Number of groups \times \text{number in each group} = \text{total}

Problem:
5 cans \times 3 tennis balls in each can = 15 tennis balls
Example 2 Twelve eggs make a dozen. How many eggs make five dozen?

Solution There are twelve eggs in each dozen.

Pattern:
Number of groups × number in each group = total

Problem:
5 dozen × 12 eggs in each dozen = 60 eggs

It takes **60 eggs** to make five dozen.

LESSON PRACTICE

Practice set Solve each “equal groups” problem. Write a multiplication pattern for each problem.

a. There were 8 birds in each flock. There were 6 flocks. How many birds were there in all?

b. There are 6 people in each car. There are 9 cars. How many people are there in all?

c. Four dozen doughnuts is how many doughnuts?

MIXED PRACTICE

Problem set 1. There were 8 boys in each row. There were 4 rows. How many boys were in all 4 rows? Write a multiplication pattern and solve the problem.

2. There were 7 girls in each row. There were 9 rows. How many girls were in all 9 rows? Write a multiplication pattern and solve the problem.

3. Write four multiplication/division facts using the numbers 5, 6, and 30.

4. The bigger animal weighed four hundred seventy-five pounds. The smaller animal weighed one hundred eleven pounds. How much more did the bigger animal weigh?

5. Shade circles to show the number $2\frac{3}{4}$.

6. To what number is the arrow pointing?
7. It is evening. What time will it be two and one half hours from now?

8. Draw a rectangle that is 4 cm by 2 cm and shade \(\frac{7}{8} \) of it.

9. Use digits to write three million, seven hundred fifty thousand. Which digit is in the hundred-thousands place?

10. Use the decimal numbers 1.4, 0.7, and 2.1 to write two addition facts and two subtraction facts.

11. The length of segment \(RT \) is 9 cm. The length of segment \(ST \) is 5 cm. What is the length of segment \(RS \)?

12. \(1.4 - 0.7 = 0.7 \)

13. \(4.78 - 3.90 = 0.88 \)

14. \(7.07 - N = 4.85 \)

15. \(C - 2.3 = 4.8 \)

16. \(403 - (5 \times 80) = 5 \)

17. \((4 + 3) \times \sqrt{64} = 41 \)

18. \(6N = 30 \)

19. \((587 - 238) + 415 = 764 \)

20. \(45 \times 6 = 270 \)

21. \(23 \times 7 = 161 \)

22. \(\$34 \times 8 = \$272 \)

23. \(56 \div 7 = 8 \)

24. \(64 \div 8 = 8 \)

25. \(\frac{45}{9} = 5 \)

26. The radius of a circle is 3 ft. Which of the following is not the diameter of the circle?
 A. 36 in. B. 6 ft C. 2 yd D. 72 in.

27. Which of these angles is acute?
 A. \[
 \begin{array}{c}
 \hline
 \end{array}
 \]
 B. \[
 \begin{array}{c}
 \hline
 \end{array}
 \]
 C. \[
 \begin{array}{c}
 \hline
 \end{array}
 \]
NEW CONCEPT

We have added and subtracted decimal numbers by lining up the decimal points and adding or subtracting the digits in each column. We line up the decimal points to ensure that we are adding and subtracting digits with the same place value.

The chart below shows place values from hundreds to hundredths. We use the decimal point as a guide for finding the value of each place. To the left of the decimal point is the ones place, then the tens place, and then the hundreds place. To the right of the decimal point is the tenths \(\frac{1}{10}\) place and then the hundredths \(\frac{1}{100}\) place.

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:
Add hundreds, then tens, and then ones, regrouping tens and ones:

- a. \(589 + 46\)
- b. \(375 + 425\)
- c. \(5.64 + 1.46\)

Review:
- d. \(389 + 195\)
- e. \(76 + 9 + 10\)
- f. \(500 + 43 + 264\)

Problem Solving:
Name the next two members of this sequence:

!, $, $, …
Example 1 Name the place value of the 3 in each number:
(a) 23.4 (b) 2.34 (c) 32.4 (d) 4.23

Solution
(a) ones
(b) tenths
(c) tens
(d) hundredths

In this lesson we will begin adding and subtracting decimal numbers that do not have the same number of decimal places.

Example 2 Add: 3.75 + 12.5 + 2.47

Solution To add decimal numbers with pencil and paper, we focus on lining up the decimal points, not the last digits.

Line up decimal points.

\[
\begin{array}{c}
1 \\
3.75 \\
12.5 \\
+ 2.47 \\
\hline
18.72
\end{array}
\]

Example 3 Subtract: 4.25 – 2.5

Solution We line up the decimal points and subtract.

Line up decimal points.

\[
\begin{array}{c}
3 \\
4.25 \\
\hline
- 2.5 \\
\hline
1.75
\end{array}
\]

LESSON PRACTICE

Practice set*

a. Which digit in 23.5 is in the tenths place?

b. Which digit in 245.67 is in the hundredths place?

c. Which digit in 12.5 is in the same place as the 7 in 3.75?

Find each sum or difference:

d. 4.35 + 2.6
e. 4.35 – 2.6

f. 12.1 + 3.25
g. 15.25 – 2.5

h. 0.75 + 0.5
i. 0.75 – 0.7
Problem set

1. Each of the 3 lifeboats carried 12 people. In all, how many people were in the 3 lifeboats? Write a multiplication pattern and solve the problem.

2. The tape cost $6.98. The tax was 42¢. What was the total price?

3. Sarah did six hundred twenty sit-ups. Ashanti did four hundred seventeen sit-ups. Sarah did how many more sit-ups than Ashanti?

4. Use the numbers 4, 12, and 48 to write two multiplication facts and two division facts.

5. Justin ran the perimeter of the block. How far did Justin run? The measurements of the block are shown on the figure below.

6. Justin ran around the block in 58.7 seconds. Write 58.7 with words.

7. Use digits to write twelve million, seven hundred fifty thousand. Which digit is in the hundred-thousands place?

8. Round 783 and 217 to the nearest hundred. Then subtract the smaller rounded number from the larger rounded number.

9. It is evening. What time will it be 9 hours and 30 minutes from now?

10. Write this addition problem as a multiplication problem:

\[
$3.75 + $3.75 + $3.75 + $3.75
\]
11. \((4 \times 50) - \sqrt{36}\)

12. \(3.6 + 4.35 + 4.2\)

13. \(\$4.63 + \$2 + 47\text{¢} + 65\text{¢}\)

14. \(43 \times 6\)

15. \(54 \times 8\)

16. \(37 \times 3\)

17. \(\$40 \times 4\)

18. \(4.7 + 5.5 + 8.4 + 6.3 + 2.4 + 2.7\)

19. \(\$5.00 - \$4.29\)

20. \(7.03 - 4.2\)

21. \(N - 27.9\)

22. \(46.2 + C\)

23. \(\frac{24}{3}\)

24. \(\frac{36}{9}\)

25. The length of segment \(AB\) is 5 cm. The length of segment \(BC\) is 4 cm. What is the length of segment \(AC\)?

26. Draw and shade circles to show the number \(3\frac{3}{8}\).

27. Compare: 1 minute \(\bigcirc\) 58.7 seconds
Focus on

Percents

A part of a whole can be named with a fraction, with a decimal number, or with a percent.

\[\frac{1}{2} \text{ of the square is shaded.} \]
\[0.50 \text{ of the square is shaded.} \]
\[50\% \text{ of the square is shaded.} \]

We read 50\% as “fifty percent.” A percent is a fraction with a denominator of 100. The percent sign (%) represents the denominator 100.

\[50\% \text{ means } \frac{50}{100} \]

Just as 50 cents is \(\frac{1}{2} \) of a whole dollar, so 50 percent is \(\frac{1}{2} \) of a whole. The close relationship between cents and percents can help us understand percents.

One half of a dollar is 50 cents.

One half is shaded. 50\% is shaded.

One fourth of a dollar is 25 cents.

One fourth is shaded. 25\% is shaded.

One tenth of a dollar is 10 cents.

One tenth is shaded. 10\% is shaded.

1. A quarter is what fraction of a dollar?

2. A quarter is what percent of a dollar?

INVESTIGATION 5
3. A dime is what fraction of a dollar?

4. A dime is what percent of a dollar?

5. A penny is what fraction of a dollar?

6. A penny is what percent of a dollar?

7. A nickel is what fraction of a dollar?

8. A nickel is what percent of a dollar?

Estimating percents of a whole

In the picture below the glass on the left is 100% full. The glass on the right is 50% full.

9. This glass is what percent full?
 A. 20% B. 40% C. 60% D. 80%

10. This glass is what percent full?
 A. 25% B. 50% C. 75% D. 100%

11. This glass is what percent full?
 A. 20% B. 40% C. 60% D. 80%

12. This glass is what percent full?
 A. 20% B. 40% C. 60% D. 80%
Finding the remaining percent of a whole

The parts of a whole total 100%. So if 25% of this circle is shaded, then 75% is not shaded.

25% + 75% = 100%

13. If 40% of this circle is shaded, then what percent is not shaded?

14. Seventy-five percent of the figure is shaded. What percent is not shaded?

15. If 80% of the answers were correct, then what percent of the answers were not correct?

16. If the chance of rain is 10%, then what is the chance that it will not rain?

Comparing percents to one half

Complete each comparison in problems 17–19. State the reason for your answer.

17. Compare: 48% ○ \(\frac{1}{2} \)

18. Compare: 52% ○ \(\frac{1}{2} \)

19. Compare: 50% ○ \(\frac{1}{3} \)

20. Forty percent of the students in the class were boys. Were there more boys or girls in the class? Explain your answer.

Finding 50% of a number

To find one half of a number, we divide the number into two equal parts. Since 50% equals \(\frac{1}{2} \), we find 50% of a number by dividing it into two equal parts. Answer these questions about 50% of a number, and describe how to find each answer.
21. How many eggs is 50% of a dozen?

22. How many minutes is 50% of an hour?

23. How much money is 50% of $10?

24. How many hours is 50% of a day?

Activity: Percent

Materials needed:

- Activity Master 9 (1 copy per student; masters available in *Saxon Math 5/4 Assessments and Classroom Masters*)

Distribute Activity Master 9. Have students complete problems 1–6 on the master (shading portions of shapes and then finding the percent that remains unshaded). Provide assistance as necessary.
LESSON 51

Adding Numbers with More Than Three Digits • Checking One-Digit Division

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:
Subtract a multiple of 10 from 100:

a. 100 – 40
 b. 100 – 70
 c. 100 – 20
 d. Count by thousands from 1000 to 10,000.

Review:

e. 465 + 175
 f. $3.50 – $1.35
 g. 346 + 29
 h. What number should be added to each of these numbers for the total to be 9: 6, 4, 7, 1?

Problem Solving:

On Christmas Day, 1995, Marta’s brother turned eighteen months old. What was the date of her brother’s birth?

NEW CONCEPTS

Adding numbers with more than three digits

When using pencil and paper to add numbers that have more than three digits, we add in the ones column first. Then we add in the tens column, the hundreds column, the thousands column, the ten-thousands column, and so forth. When the sum of the digits in a column is a two-digit number, we record the second digit below the line. We write the first digit above (or below) the column to the left.

Example 1

Add:

43,287

+ 68,595

Solution

We add the digits in the ones column first. Then we add the digits in the other columns. When the sum is a two-digit number, we write the second digit below the line and the first digit above (or below) the column to the left.
Example 2 Add: 456 + 1327 + 52 + 3624

Solution When we write the numbers in columns, we are careful to line up the last digit in each number. We add the digits one column at a time, starting from the right. In this example we show the carried numbers written below the columns.

Checking one-digit division We can check a division answer by multiplying the numbers outside the division box:

\[
\begin{array}{c}
4 \\
3 \overline{)12} \\
\times 3 \\
\hline
12 \\
\text{check}
\end{array}
\]

We see that the product matches the number inside the division box. We usually show this by writing the product under the number in the division box.

Example 3 Divide. Check the answer by multiplying.
(a) 3\(\overline{)18}\) (b) 4\(\overline{)32}\)

Solution First we divide and write the answer above the box. Then we multiply and write the product below the box.

\[
\begin{array}{c}
6 \\
3 \overline{)18} \\
\hline
18 \\
\hline
\end{array}
\]

Practice using multiplication to check all your division answers in the problem sets.

LESSON PRACTICE

Practice set Add:

- a. 4356
 \[+ 5644\]
- b. 46,027
 \[+ 39,682\]
- c. 360,147
 \[+ 96,894\]
- d. 436 + 5714 + 88
- e. 43,284 + 572 + 7635

Divide. Check each answer by multiplying.
- f. 3\(\overline{)21}\)
- g. 7\(\overline{)42}\)
- h. 6\(\overline{)48}\)
Problem set

1. In the P.E. class there were four teams. Each team had eight players. How many players were on all four teams? Write a multiplication pattern and solve the problem.

2. There were 7 pancakes in each stack. There were 6 stacks of pancakes. How many pancakes were there in all? Write a multiplication pattern and solve the problem.

3. Luis ran the first lap in 63.4 seconds and the second lap in 65.3 seconds. Luis ran the first lap how much faster than the second lap?

4. Write four multiplication/division facts using the numbers 6, 7, and 42.

5. Compare: $1 + 3 + 5 + 7 + 9 \bigcirc \text{five squared}$

6. (a) Round 367 to the nearest hundred.
 (b) Round 367 to the nearest ten.

7. Draw a circle and shade 50% of it.

8. Name each type of angle shown below:
 (a) \hspace{1cm} (b) \hspace{1cm} (c)
 \hspace{1cm} \hspace{1cm}

9. A rectangle is shown at right.
 (a) What is its length?
 (b) What is its width?
 (c) What is its perimeter?
 (d) What is its area?

10. The 3-quart juice container held 2.84 L of juice. Use words to write 2.84 L.
11. \(15.24 + 18.5\)

12. \(63,285 + 97,642\)

13. \(5.00 - 4.81\)

14. \(N + 39.8\) \(= 61.4\)

15. \(85 \times 5\)

16. \(37 \times 7\)

17. \(40 \times 8\)

18. \(F \times 8\) \(= 72\)

19. \(47.8 - C\) \(= 20.3\)

20. \(462,586 + 39,728\)

21. \(Z - 4.78\) \(= 2.63\)

Divide. Check each answer by multiplying.

22. \(2 \overline{18}\)

23. \(7 \overline{21}\)

24. \(56 \overline{8}\)

25. The length of \(AB\) is 7 cm. The length of \(AC\) is 12 cm. How long is \(BC\)?

26. If half the students are boys, then what percent of the students are girls?

27. If \(5N = 0\), then what does \(6N\) equal?

28. (a) What fraction of the large square is shaded?

(b) What percent of the large square is shaded?

(c) The shaded part of the large square represents what decimal number?
LESSON 52

Subtracting Numbers with More Than Three Digits • Stories About Equal Groups, Part 2

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:
Subtract a multiple of 10 from a multiple of 100:

a. 200 – 30
 b. 300 – 60
 c. 400 – 90

Review:

d. $2.48 + $2.99
e. 384 + 167
f. 46 + 7 + 30

g. What number should be added to each of these numbers for the total to be 9: 8, 2, 5, 3?

Problem Solving:
A loop is worth five points, and a tip is worth three points. Sal made four loops and two tips. Cheryl made three loops and five tips. How many points did each person earn?

NEW CONCEPTS

Subtracting numbers with more than three digits
When using pencil and paper to subtract numbers with more than three digits, we begin by subtracting in the ones column. We regroup if necessary. Then we move one column to the left and subtract in the tens column, regrouping if necessary. Then we subtract in the hundreds column, the thousands column, the ten-thousands column, and so on. Sometimes we must subtract across several zeros.

Example 1 Subtract: 36,152 – 9,415

Solution We write the first number above the second number. We line up digits with the same place value. First we subtract in the ones column. Then we subtract in the other columns.

\[
\begin{array}{c}
26,152 \\
9,415 \\
\hline
26,737
\end{array}
\]
Example 2 Subtract:
\[
\begin{array}{r}
\quad \$5000 \\
- \quad \$2386
\end{array}
\]

Solution We need to find some ones for the ones place before we can subtract. We may do this in one step by thinking of the “500” in 5000 as 500 tens. We exchange one of these tens for ten ones, leaving 499 tens. Then we subtract.

Stories about equal groups, part 2 “Equal groups” stories have a multiplication pattern. If we know the number of groups and the number in each group, we multiply to find the total. However, if we know the total, then we need to divide to find the number of groups or the number in each group.

Example 3 Ted has 21 tennis balls in cans. There are 3 tennis balls in each can. How many cans does he have?

Solution There are two numbers in this problem. The words in each are a clue. They show us the number of objects in each group (3 tennis balls). The other number is 21. We need to decide whether this is the number of groups or the total. Altogether, Ted has 21 tennis balls. This is the total.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number in each group \times Number of groups \rightarrow Total</td>
<td>3 tennis balls in each can \times N cans \rightarrow 21 tennis balls</td>
</tr>
</tbody>
</table>

Since we know the total, we divide the total by the number in each group to find the number of groups.

\[
\begin{array}{r}
7 \\
3)21 \\
21
\end{array}
\]

We check our answer by multiplying: 7 times 3 tennis balls is 21 tennis balls. Our answer is correct. Ted has 7 cans.

Example 4 Ted has 5 cans of racquetballs. He has 40 racquetballs in all. If each can contains the same number of racquetballs, how many racquetballs are in each can?
Solution The words *in each* show us that this is an “equal groups” problem. However, we are not given an *in each* number.

Pattern:
Number of groups × number in each group = total

Problem:
5 cans × N racquetballs in each can = 40 racquetballs

To find the number in each can, we divide 40 by 5.

\[
\begin{array}{c}
8 \\
5 \) 40 \\
40
\end{array}
\]

We see that 5 times 8 racquetballs equals 40 racquetballs, so our answer is correct. There are 8 racquetballs in each can.

Lesson Practice

Practice set*

Subtract:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>4783</td>
<td>b.</td>
</tr>
<tr>
<td></td>
<td>2497</td>
<td></td>
</tr>
</tbody>
</table>

d. There were 35 people. There were 7 cars. The number of people in each car was the same. How many people were in each car? Write a multiplication pattern and solve the problem.

e. Thirty students were arranged in rows. Six students were in each row. How many rows were there? Write a multiplication pattern and solve the problem.

Mixed Practice

Problem set 1. There were 8 buses. Each bus could seat 60 students. How many students could ride in all the buses? Write a multiplication pattern and solve the problem.

2. Each van could carry 9 students. There were 63 students. How many vans were needed to carry all of the students? Write a multiplication pattern and solve the problem.

3. The coach separated 28 players into 4 equal teams. How many players were on each team? Write a multiplication pattern and solve the problem.

4. There are 10 swimmers in the race. Only 3 can be awarded medals. How many swimmers will not win a medal?
5. Lindsey finished first in the 100-meter freestyle race with a time of 57.18 seconds. Tanya finished second with 58.26 seconds. Lindsey finished the race how many seconds sooner than Tanya?

6. Write four multiplication/division facts using the numbers 7, 8, and 56.

7. Compare: \(1 + 2 + 3 + 4 \quad \sqrt{100}\)

8. What are the next three numbers in this counting sequence?
\[\ldots, 6000, 7000, 8000, \underline{9000}, \underline{10000}, \underline{11000}, \ldots\]

9. There were two hundred sixty-seven apples in the first bin. There were four hundred sixty-five apples in the second bin. How many fewer apples were in the first bin?

10. \(8.49 + 7.3 + 6.15\)

11. \(6N = 42\)

12. \(\frac{47,586}{23,491}\)

13. \(\frac{5.00}{-3.26}\)

14. \(\frac{N}{+25.8}\)

15. \(\frac{49}{6}\)

16. \(\frac{84}{5}\)

17. \(\frac{70}{8}\)

18. \(\frac{35}{9}\)

19. \(\frac{400}{N}\)

20. \(\frac{\$40.00}{-24.68}\)

21. (a) Round 639 to the nearest hundred.
(b) Round 639 to the nearest ten.

22. Which side of this triangle appears to be perpendicular to \(PR\)?

23. Compare: \(49\% \quad \frac{1}{2}\)

24. Divide. Check each answer by multiplying.
(a) \(3 \div 27\)
(b) \(7 \div 28\)
(c) \(8 \div 72\)
25. This figure has four sides, but it is not a rectangle. What is the perimeter of this figure?

26. (a) Is $24.10 closer to $24 or to $25?
(b) Is 24.1 closer to 24 or to 25?

27. If $\triangle = \square$, which of these is not necessarily true?

A. $\triangle + 2 = \square + 2$
B. $2 \times \triangle = 2 \times \square$
C. $\triangle - 2 = \square - 2$
D. $2 \times \triangle = \square + 2$

28. (a) What fraction of the large square is shaded?
(b) What percent of the large square is shaded?
(c) The shaded part of the large square represents what decimal number?
NEW CONCEPT

We can divide 12 objects into equal groups of four. Here we show 12 dots divided into three equal groups of four:

12 dots
3 equal groups

However, we cannot divide 13 dots into equal groups of four, because there is one dot too many. We call the extra dot the remainder.

13 dots
3 equal groups
Remainder

We can show that 13 is to be divided into groups of four by writing

\[4 \overline{)13} \]
As we look at this problem, we might wonder what to write for the answer. The answer is not exactly 3, because 3×4 is 12, which is less than 13. However, the answer cannot be 4, because 4×4 is 16, which is more than 13. Since we can make three groups of four, we write “3” for our answer. Then we multiply 3 by 4 and write “12” below the 13.

$$
\begin{array}{c}
3 \\
\underline{4)13} \\
12
\end{array}
$$

We see that 13 is more than 12. Now we find out how much is left over after making three groups of four. To do this, we subtract 12 from 13.

$$
\begin{array}{c}
3 \\
\underline{4)13} \\
12 \\
\underline{-12} \\
1
\end{array}
$$

There is one left over. The amount left over is the remainder. Using the letter R for remainder, we write the answer to the division problem as “3 R 1.”

$$
\begin{array}{c}
3 \quad \text{remainder}
\end{array}
$$

Example 1 Divide: $3\overline{16}$

Solution This problem tells us to divide 16 into groups of three. We can use a sketch to help us with the problem. Draw 16 dots and make groups of three dots.

```
  ● ● ●    ● ● ●    ● ● ●    ● ● ●    ● ● ● ● ●●
```

We can make five groups of three. One dot is not in a group of three. We write “5” above the division box, as shown below.

$$
\begin{array}{c}
5 \\
\underline{3\overline{16}}
\end{array}
$$

Since three groups of five is 15, we write “15” below the 16. Then we subtract and find that the remainder is 1.

$$
\begin{array}{c}
5 \\
\underline{3\overline{16}} \\
15 \\
\underline{-15} \\
1
\end{array}
$$

We write the answer as $5 \text{ R } 1$.
Example 2 Divide: 20 ÷ 6

Solution First we write the problem using a division box.

\[
\begin{array}{c|c}
6 & 20 \\
\hline
& 3 \\
\end{array}
\]

We can draw 20 dots and make groups of six, or we can think, “What number times six is close to but not more than 20?” We might start by thinking, “Six times four equals 24”; but 24 is too much, so we think, “Six times three equals eighteen.” Eighteen is less than 20. We write “3” as shown below.

\[
\begin{array}{c|c}
6 & 20 \\
\hline
3 & 18 \\
\hline
& 2 \text{ remainder}
\end{array}
\]

Next we multiply; then we subtract.

\[
\begin{array}{c|c}
6 & 20 \\
\hline
3 & 18 \\
& 2 \text{ remainder}
\end{array}
\]

The answer is \(3 \text{ R } 2\).

LESSON PRACTICE

Practice set* a. Draw dots and make groups to show 14 ÷ 4. Write the answer shown by your sketch.

Divide. Write each answer with a remainder.

b. 3 \(1\) 17 c. 5 \(1\) 12 d. 4 \(2\) 23

e. 15 ÷ 2 f. 25 ÷ 6 g. 25 ÷ 3

MIXED PRACTICE

Problem set 1. Eve had 56 washers. She wanted to put them into equal piles of 8 washers. How many piles would she have? Write a multiplication pattern and solve the problem.

2. There were 42 children waiting for a ride. There were 7 cars available. If the same number rode in each car, how many children would be in each car? Write a multiplication pattern and solve the problem.

3. Write four multiplication/division facts using the numbers 4, 7, and 28.
4. Which months have exactly 30 days?
 (5)

5. Write the next three numbers in this counting sequence:
 (3)
 ... 16,000, 17,000, 18,000, _____, _____, _____, ...

6. (a) Round 4728 to the nearest hundred.
 (20, 42)
 (b) Round 4728 to the nearest ten.

7. Write the time “a quarter after four in the afternoon” in digital form.
 (19)

8. One side of a square is 4 feet long. What is the perimeter of the square?
 (Inv. 2)

9. How many circles are shaded?
 (35)

10. \(\sqrt{64} + (42 \div 6) \)
 (Inv. 3, 45)

11. $6.35 + $12.49 + 42¢
 (43)

12. $100.00 − $59.88
 (52)

13. 51,438 − 47,495
 (52)

14. \(\frac{60}{9} \)
 (42)

15. \(\frac{57}{4} \)
 (48)

Divide. Write each answer with a remainder.

16. \(\frac{25}{4} \)
 (53)

17. \(\frac{22}{5} \)
 (53)

18. \(\frac{639}{6} \)
 (53)

19. \(\frac{730}{7} \)
 (53)

20. \(\frac{46}{8} \)
 (48)

21. \(\frac{38}{7} \)
 (48)

22. \(\frac{22}{16.5} \)
 (24, 43)

23. 6.75 + 4.5 + 12.5
 (50)

24. Use digits to write seven million, two hundred sixty thousand.
 (34)

25. A half-gallon container holds about 1.89 L of fluid. Use words to write 1.89 L.
 (40, Inv. 4)
26. Sam said, “I am thinking of two numbers. Their product is 6.” The two numbers Sam was thinking of could not be
 A. 1 and 6 B. 2 and 3 C. 3 and 2 D. 6 and 0

27. (a) A quarter is what percent of a dollar?
 (b) A quart is what percent of a gallon?

28. (a) What fraction of the large square is shaded?
 (b) What percent of the large square is shaded?
 (c) The shaded part of the large square represents what decimal number?
A **year** is the length of time it takes the Earth to travel around the Sun. A **day** is the length of time it takes the Earth to spin around once on its axis. It takes the Earth almost exactly 365\(\frac{1}{4}\) days to travel around the Sun. To make the number of days in every year a whole number, we have three years in a row that have 365 days each. These years are called **common years**. Then we have one year that has 366 days. A year with 366 days is called a **leap year**.\(^4\)

A year is divided into 12 **months**. The month February has 28 days in common years and 29 days in leap years. Four months have 30 days each. All the rest have 31 days. If we know the four months that have 30 days, we can remember the number of days in the other months. The following jingle helps us remember which months have 30 days:

\[^4\]Sometimes there are 7 years in a row without a leap year. This happens around “century years” that are not multiples of 400. For example, the 7-year span 1897–1903 contained no leap years, since 1900 is not a multiple of 400.
Thirty days hath September,
April, June, and November.
February has twenty-eight alone,
All the rest have thirty-one.
Excepting leap year,
That’s when February’s days are twenty-nine.

A **decade** is ten years. A **century** is one hundred years.

Example 1 How many days does December have?

Solution “Thirty days hath September, April, June, and November. February has twenty-eight alone” tells us that December does not have 30 days. December must have **31 days**.

Example 2 According to this **calendar**, May 10, 2014, is what day of the week?

Solution The letters across the top of the calendar stand for “Sunday,” “Monday,” “Tuesday,” “Wednesday,” “Thursday,” “Friday,” and “Saturday.” We see that May 10 is a **Saturday**, the second Saturday of the month.

Example 3 How many years were there from 1620 to 1776?

Solution This is a problem about comparing two numbers (the years 1620 and 1776). To find the amount of time between two years, we subtract. Instead of thinking “larger-smaller-difference,” we think of the words “later-earlier-difference.” We subtract the earlier date from the later date. In this problem that means we subtract 1620 from 1776.

\[
\begin{align*}
1776 \\
- 1620 \\
\hline
156
\end{align*}
\]

We find that there were **156 years** from 1620 to 1776.

Rounding numbers to the nearest thousand
To round a number to the nearest thousand, we find the multiple of 1000 to which the number is closest. The multiples of 1000 are the numbers in this sequence:

1000, 2000, 3000, ...

A number line can help us understand rounding.
Example 4 Round 7836 to the nearest thousand.

Solution We know that 7836 is more than 7000 but less than 8000. Halfway from 7000 to 8000 is 7500. Since 7836 is more than halfway from 7000 to 8000, it is nearer 8000.

To the nearest thousand, 7836 rounds to 8000.

Example 5 Round 34,186 to the nearest thousand.

Solution One way to round 34,186 is to see that 34,186 is between 34,000 and 35,000. Halfway from 34,000 to 35,000 is 34,500. Since 34,186 is less than halfway to 35,000, we know that 34,186 is nearer 34,000.

Another way to round to the nearest thousand is to focus on the digit in the hundreds place.

If the digit in the hundreds place is 5 or more, we add 1 to the digit in the thousands place. If the digit in the hundreds place is 4 or less, we leave the thousands digit unchanged. In either case, all digits to the right of the thousands place become zeros. Here the digit in the hundreds place is 1, so 34,186 rounds down to 34,000.

Example 6 Round 5486 to the nearest
(a) thousand. (b) hundred. (c) ten.

Solution (a) 5000 (b) 5500 (c) 5490

LESSON PRACTICE

Practice set a. How many days are in a leap year?

b. According to the calendar in example 2, what is the date of the fourth Friday of the month?

c. How many years were there from 1918 to 1943?

d. A century is how many decades?
Round each number to the nearest thousand:

e. 6746
f. 5280
g. 12,327

h. 21,694
i. 9870
j. 27,462

k. Round 6472 to the nearest thousand, to the nearest hundred, and to the nearest ten.

MIXED PRACTICE

Problem set

1. There were 7 students in each row. If there were 56 students in all, how many rows were there? Use a multiplication pattern to solve the problem.

2. There were 7 nails in each board. If there were 42 boards, how many nails were there? Use a multiplication pattern to solve the problem.

3. How many years is 5 decades?

4. How many years were there from 1921 to 1938? Use a subtraction pattern to solve the problem.

5. According to this calendar, what day of the week was December 25, 1957?

6. Round 5236 to the nearest thousand. Round 6929 to the nearest thousand. Then add the rounded numbers.

7. One side of a rectangle is 10 kilometers long. Another side is 20 kilometers long. Draw the rectangle and show the lengths of the sides. What is the perimeter of the rectangle?

8. (a) What fraction of this circle is shaded?

 (b) What percent of this circle is shaded?

9. To what number is the arrow pointing?
10. When Bryan emptied his bank, he found 17 pennies, 4 nickels, 5 dimes, and 2 quarters. What was the value of the coins in his bank?

11. $794,150 + 9,863 = 803,013$

12. $51,786 + 36,357 = 88,143$

13. $87.6 + 4.0 = 91.6$

14. $20.00 - 18.47 = 1.53$

15. $41,315 - 29,418 = 11,897$

16. $46 \times 7 = 322$

17. $54 \times 8 = 432$

18. $39 \times 9 = 351$

19. $40 \times 9 = 360$

20. $3.68 + 2.4 + 15.2 = 21.28$

21. $4Y = 32$

22. $43 \div 7 = 6.142857$

23. $9)\overline{64}$

24. One inch equals 2.54 cm. Use words to write 2.54 cm.

25. The figure shown at right is a square.

(a) What is its perimeter?

(b) What is its area?

26. This figure is a circle with its center at point M. Which of these segments is a diameter of the circle?

A. \overline{MS} B. \overline{RM} C. \overline{RT} D. \overline{TM}

27. (a) Is $136.80 closer to $136 or to $137?

(b) Is 136.8 closer to 136 or to 137?

28. (a) What fraction of the large square is shaded?

(b) What percent of the large square is shaded?

(c) The shaded part of the large square represents what decimal number?
LESSON

55

Multiples • Factors

WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:
Find the change back from a dollar for items with these prices:
 a. 26¢ b. 92¢ c. 14¢ d. 76¢ e. 31¢
Review:
 f. $4.00 − $0.50 g. 48 + 29 + 210 h. 300 + 260 + 40

Problem Solving:
Martin was thinking of a two-digit number. He gave this clue: “You say the number when you count by threes from three, by fours from four, and by fives from five.” What was Martin’s number?

NEW CONCEPTS

Multiples
If we multiply 4 by the numbers 1, 2, 3, 4, 5, 6, ..., we get
 4, 8, 12, 16, 20, 24, ...
These numbers are multiples of 4. The multiples of 4 are the numbers we say if we count by fours, starting from 4.
The following numbers are the multiples of 6:
 6, 12, 18, 24, 30, 36, ...
The multiples of any counting number are the products we get when we multiply the number by 1, 2, 3, 4, 5, 6, ...

Example 1
List the first four multiples of 7.

Solution
To find the first four multiples of 7, we multiply 7 by 1, then by 2, then by 3, and then by 4.

\[
\begin{array}{cccc}
7 & 7 & 7 & 7 \\
\times 1 & \times 2 & \times 3 & \times 4 \\
7 & 14 & 21 & 28 \\
\end{array}
\]

The first four multiples of 7 are 7, 14, 21, and 28. The multiples of 7 are the numbers we say when we count by sevens.

Example 2
(a) What is the fourth multiple of 6?
(b) What is the third multiple of 8?
Solution (a) To find the fourth multiple of 6, we multiply 6 by 4. The fourth multiple of 6 is **24**.

(b) To find the third multiple of 8, we multiply 8 by 3. The third multiple of 8 is **24**.

Example 3 Twelve is a multiple of which whole numbers?

Solution A multiplication table can help us answer this question. We find 12 at each of these locations on a multiplication table:

<table>
<thead>
<tr>
<th></th>
<th>1 x 12</th>
<th>12 x 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 x 6</td>
<td>6 x 2</td>
</tr>
<tr>
<td>3</td>
<td>3 x 4</td>
<td>4 x 3</td>
</tr>
</tbody>
</table>

So 12 is a multiple of **1, 2, 3, 4, 6, and 12**.

Example 4 (a) What is the last digit of any multiple of 10?

(b) What two digits appear as the last digit of the multiples of 5?

Solution (a) The last digit of any multiple of 10 is **zero**. Any whole number ending in zero can be divided by 10 without leaving a remainder.

(b) The last digit of a multiple of 5 is either **five** or **zero**. Any whole number ending in five or zero can be divided by 5 without leaving a remainder.

Factors In example 3 we found that 12 is a multiple of 1, 2, 3, 4, 6, and 12. Each of these numbers is a **factor** of 12. On a multiplication table the factors are the numbers that can be multiplied to produce a multiple.
Example 5 List the four factors of 6.

Solution Six is the multiple. We are asked to find the factors. These whole-number multiplications produce 6:
\[
\begin{align*}
1 \times 6 & \quad 6 \times 1 \\
2 \times 3 & \quad 3 \times 2 \\
\end{align*}
\]
So the factors of 6 are 1, 2, 3, and 6.

Example 6 List the factors of 9.

Solution These multiplications produce 9:
\[
\begin{align*}
1 \times 9 & \quad 3 \times 3 \\
9 \times 1 & \\
\end{align*}
\]
So the factors of 9 are 1, 3, and 9.

Example 7 List the factors of 7.

Solution We find 7 as a multiple on a multiplication table twice.
\[
\begin{align*}
1 \times 7 & \quad 7 \times 1 \\
\end{align*}
\]
So 7 has only two factors, 1 and 7.

 LESSON PRACTICE

Practice set

a. List the first five multiples of 6.

b. List the third, fourth, and fifth multiples of 9.

c. What is the seventh multiple of 8?

d. What five digits appear as the last digit of the multiples of 2?

e. Ten is a multiple of which whole numbers?

f. List the factors of 8.

g. Two factors of 18 are 1 and 18. Find four more factors of 18.

h. List the factors of 5.

 MIXED PRACTICE

Problem set

1. Rodric bought a toy for $1.85 and sold it for 75¢ more. For what price did he sell the toy?

2. Two thousand people entered the contest. Only seven will win prizes. How many entrants will not win prizes?

3. Sixty percent of the students in the class were boys. Were there more girls or more boys in the class?
4. Twenty-seven thousand people lived in the big town. Only eight thousand, four hundred people lived in the small town. How many more people lived in the big town?

5. Draw a rectangle that is 4 cm long and 3 cm wide.
 (Inv. 2, Inv. 3)
 (a) What is the perimeter of the rectangle?
 (b) What is the area of the rectangle?

6. Fiona found the third multiple of 4. Then she subtracted two from this number. What was her answer?

7. Two factors of 15 are 1 and 15, because
 (55)
 \[1 \times 15 = 15\]
 Find two more factors of 15.

8. It is afternoon. What time was it 30 minutes ago?

9. How many years were there from 1776 to 1789? Use a subtraction pattern to solve the problem.

10. What is the length of \(ST\)?

11. 4.00
 \(-\) 2.22
 \(\underline{1.78}\)

12. 70.5
 \(-\) 42.3
 \(\underline{28.2}\)

13. $45.87
 + $23.64
 \(\underline{69.51}\)

14. $25.42
 \(-\) $7.25
 \(\underline{18.17}\)

15. 64
 \(\times\) 5
 \(\underline{320}\)

16. 70
 \(\times\) 6
 \(\underline{420}\)

17. 89
 \(\times\) 4
 \(\underline{356}\)

18. 63
 \(\times\) 7
 \(\underline{441}\)

19. \(\tfrac{63}{7}\)

20. \(\sqrt{15}\)

21. 4.68 + 12.2 + 3.75

22. 33 \(\div\) 6

23. \(\sqrt{64} \div (4 + 4)\)
24. Write this addition problem as a multiplication problem:

 \[0.75 + 0.75 + 0.75 + 0.75\]

25. Which of these numbers can be divided by 5 without leaving a remainder? How can you tell just by looking?

 A. 32 B. 35 C. 37 D. 41

26. One inch equals 2.54 cm. How many centimeters long is a 2-inch segment?

27. (a) Is $2.54 closer to $2 or to $3?

 (b) Is 2.54 closer to 2 or to 3?

28. (a) What fraction of the large square is shaded?

 (b) What percent of the large square is shaded?

 (c) The shaded part of the large square represents what decimal number?
LESSON 56
Using Pictures to Compare Fractions

WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:
Subtract cents from dollars:
 a. $1.00 − $0.42 b. $1.00 − $0.67 c. $2.00 − $0.25

Review:
 d. $3.45 + $4.65 e. 370 − 135 f. 76 + 19 + 100

Problem Solving:
Sarah paid a dollar for an item that cost 63 cents. If the cashier gives her back four coins, what coins should they be?

NEW CONCEPT

One way to compare fractions is to draw pictures of the fractions and then compare the pictures. To illustrate, we will draw pictures to compare \(\frac{1}{2} \) and \(\frac{1}{3} \). We begin by drawing two circles of the same size. Then we shade \(\frac{1}{2} \) of one circle and \(\frac{1}{3} \) of the other circle.

![Diagram of circles with shaded sections]

We see that \(\frac{1}{2} \) of a circle is larger than \(\frac{1}{3} \) of the same-size circle. So \(\frac{1}{2} \) is greater than \(\frac{1}{3} \).

\[
\frac{1}{2} > \frac{1}{3}
\]

When we draw figures to compare fractions, the figures should be congruent. Congruent figures have the same shape and size.
Example Compare: $\frac{1}{4} \bigcirc \frac{1}{3}$. Draw and shade two rectangles to show the comparison.

Solution We draw two congruent rectangles. We shade $\frac{1}{4}$ of one rectangle and $\frac{1}{3}$ of the other. We see that $\frac{1}{4}$ is slightly less than $\frac{1}{3}$.

![Comparison of fractions]

\[
\frac{1}{4} < \frac{1}{3}
\]

LESSON PRACTICE

Practice set Compare these fractions. Draw and shade a pair of congruent figures to illustrate each comparison.

a. $\frac{1}{2} \bigcirc \frac{2}{3}$ b. $\frac{1}{2} \bigcirc \frac{1}{4}$ c. $\frac{2}{5} \bigcirc \frac{1}{3}$

MIXED PRACTICE

Problem set 1. James has fifty-six pies. Seven pies will fit on one tray. How many trays does he need to carry all of the pies? Use a multiplication pattern to solve the problem.

2. One gallon is about 3.78 L. About how many liters is two gallons? Use words to write the answer.

3. To estimate the sum of 6.87 and 5.92, Kent rounded each number to the nearest dollar before adding. Write the numbers Kent added and their sum.

4. Write four multiplication/division facts using the numbers 3, 8, and 24.

5. List the seven months of the year that have 31 days.

6. Find the eighth multiple of six. Then add one. What is the square root of the answer?
7. Compare these fractions. Draw and shade two congruent rectangles to show the comparison.

\[
\frac{1}{4} \bigcirc \frac{1}{6}
\]

8. Round 4873 to the nearest
 (a) thousand. (b) hundred. (c) ten.

9. A rectangle is shown at right.

(a) What is its perimeter?

(b) What is its area?

10. $10.00 - \$5.46 = \4.54

11. $36,024 - 15,539 = 20,485$

12. $43,675 + 52,059 = 95,734$

13. $73 \times 9 = 657$

14. $46 \times 7 = 322$

15. $84 \times 6 = 504$

16. $40 \times 5 = 200$

17. $7 \overline{) 48}$

18. $63 \div 7 = 9$

19. $3.75 + 2.5 + 0.4 = 6.65$

20. $42.25 - 7.5 = 34.75$

21. Which of these numbers is a multiple of 10? How can you tell just by looking?
 A. 35 B. 40 C. 45 D. 101

22. (a) A dime is what fraction of a dollar?
 (b) A dime is what percent of a dollar?

23. Washington School cost about $12,350,000 to build. Use words to write that amount of money.

24. Two factors of 16 are 1 and 16, because

\[
1 \times 16 = 16
\]

Find three more factors of 16.
25. Refer to figure $ABCD$ to answer (a) and (b).
 (a) Which segment appears to be parallel to AB?
 (b) Angle B is what type of angle?

26. Which of these numbers is a factor of 12?
 A. 0 B. 6 C. 8 D. 24

27. Which of these numbers is a multiple of 12?
 A. 0 B. 6 C. 8 D. 24

28. (a) A penny is what fraction of a dollar?
 (b) A penny is what percent of a dollar?
 (c) Write the value of a penny as a decimal part of a dollar.
A rate shows a relationship between two different measurements. Here we relate the measurements “miles” and “hours”:

The car went 30 miles per hour.

This statement tells us that the car’s rate is 30 miles each hour. Each hour can be considered one “time group.” We will see in the following examples that rate problems have the same pattern as “equal groups” problems.

Example 1 Liam drove the car 30 miles per hour for 4 hours. How far did Liam drive?

Solution This is a rate problem. A rate problem is about “equal groups.”

We do not see the words *in each* in a rate problem, but there are words that mean *in each*. The words *miles per hour* in this problem mean “miles *in each* hour.”

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number in each time group</td>
<td>30 miles per hour</td>
</tr>
<tr>
<td>× Number of time groups</td>
<td>× 4 hours</td>
</tr>
<tr>
<td>Total</td>
<td>120 miles</td>
</tr>
</tbody>
</table>

Liam drove 120 miles.
Example 2 Nalcomb earns 3 dollars a week for doing chores. How much money does he earn for doing 7 weeks of chores?

Solution This is a rate problem. A rate problem is an “equal groups” problem. The phrase 3 dollars a week means “3 dollars each week.”

Pattern:
Number of groups × number in each group = total

Problem:
7 weeks × 3 dollars per week = 21 dollars

Nalcomb earns **21 dollars** for doing 7 weeks of chores.

LESSON PRACTICE

Practice set a. Kali drove 55 miles in one hour. At that rate, how far can she drive in 6 hours? Write a multiplication pattern and solve the problem.

b. Jeff swims 20 laps every day. How many laps will he swim in 1 week? Write a multiplication pattern and solve the problem.

MIXED PRACTICE

Problem set 1. Marybeth could jump 42 times each minute. At that rate, how many times could she jump in 8 minutes? Use a multiplication pattern to solve the problem.

2. Robo could run 7 miles in 1 hour. At that rate, how many miles could Robo run in 3 hours? Use a multiplication pattern to solve the problem.

3. Write four multiplication/division facts using the numbers 8, 9, and 72.

4. What is the sum of \(\sqrt{36} \) and \(\sqrt{64} \)?

5. Compare: \(\frac{1}{3} \bigcirc 50\% \)

6. (a) Round 5280 to the nearest thousand.
 (b) Round 5280 to the nearest hundred.
7. It is afternoon. What time was it 6 hours and 5 minutes ago?

8. Find the fourth multiple of 6. Then find the third multiple of 8. What is the sum of these two multiples?

9. How many years were there from 1492 until 1800? Use a subtraction pattern to solve the problem.

10. A square has one side that is 7 inches long.
 (Inv. 2, Inv. 3) (a) What is the perimeter of the square?
 (b) What is the area of the square?

11. \[\frac{70,003}{36,418} \]
12. \[\frac{N}{4.32} - 2.57 \]
13. \[\frac{861.34}{764.87} \]

14. \[\frac{93}{5} \]
15. \[\frac{84}{6} \]
16. \[\frac{77}{7} \]
17. \[\frac{80}{8} \]

18. \[\frac{56}{8} \]
19. \[\frac{765}{80} \]
20. \[\frac{45}{6} \]

21. \[7N = 42 \]
22. \[1.75 + 17.5 \]

23. (a) Which segment in this figure is a diameter?
 (b) Segments \(MW \) and \(MX \) form an angle. What type of angle is it?

24. Compare these fractions. Draw and shade two congruent rectangles to show the comparison.
 \[\frac{2}{3} \bigcirc \frac{3}{4} \]
25. Point X represents what number on this number line?

26. One inch is 2.54 centimeters. A segment that is 3 inches long is how many centimeters long?

27. Write this addition problem as a multiplication problem:
\[2.54 + 2.54 + 2.54\]

28. (a) Three pennies are what fraction of a dollar?
(b) Three pennies are what percent of a dollar?
(c) Write the value of three pennies as a decimal part of a dollar.
WARM-UP

Facts Practice: 90 Division Facts (Test J)

Mental Math:
Subtract dollars and cents from dollars:
 a. $5.00 – $2.25 b. $5.00 – $1.63 c. $5.00 – $3.35

Review:
 d. 560 – 200 e. 35 + 49 + 110 f. $6.58 + $0.72

Problem Solving:
From point A to point B is 1\frac{1}{4} inches. From point B to point C is how many inches?

NEW CONCEPT

When we multiply a three-digit number using pencil and paper, we multiply the ones digit first. Then we multiply the tens digit. Then we multiply the hundreds digit.

Multiply the ones digit.

123
\times 3
\underline{9}

Multiply the tens digit.

\underline{123}
\times 3
\underline{69}

Multiply the hundreds digit.

\underline{123}
\times 3
\underline{369}

In the problem below we get 18 when we multiply the ones digit. We write the 8 in the ones column and carry the 1 above the tens column. Then we multiply the tens digit.

Multiply the ones digit.

1
456
\times 3
\underline{8}

Multiply the tens digit.

\underline{11}
456
\times 3
\underline{68}

Multiply the hundreds digit.

\underline{11}
456
\times 3
\underline{1368}
Three times five is 15, plus one is 16. We write the 6 below the bar and carry the 1 above the hundreds column. Then we multiply the hundreds. Three times four is 12, plus one is 13. The product is 1368.

Example 1 Multiply: 654×7

Solution First we multiply the ones digit. Then we multiply the tens digit and then the hundreds digit. The first digit of any two-digit answer is carried to the next column.

\[
\begin{array}{c}
32 \\
654 \\
\times 7 \\
\hline
4578
\end{array}
\]

Example 2 Multiply: 3.75×3

Solution We first multiply the pennies. Three times five pennies is 15 pennies, which equals one dime and five pennies. We write the 5 below the bar and the 1 above the dimes.

Next we multiply the dimes. Three times seven dimes is 21 dimes. We add the one dime we carried to get a total of 22 dimes. Since 22 dimes equals two dollars and two dimes, we write a 2 below the bar and a 2 above the dollars.

Finally, we multiply the dollars. Three times three dollars is nine dollars. We add the two dollars we carried to get a total of 11 dollars. The product is 11.25.

LESSON PRACTICE

Practice set Multiply:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 234</td>
<td>b. 340</td>
<td>c. 4.25</td>
</tr>
<tr>
<td>$\times 3$</td>
<td>$\times 4$</td>
<td>$\times 5$</td>
</tr>
</tbody>
</table>

d. Explain the steps of multiplying 5 by 4.25, using the words *dollars*, *dimes*, and *pennies* (as in example 2).
Problem set 1. Elizabeth pays $7.50 every week for karate lessons. How much
does she pay for 4 weeks of karate lessons? Use a multiplication
pattern to solve the problem.

2. It takes 4 apples to make 1 pie. How many apples does it
take to make 5 pies? Use a multiplication pattern to solve
the problem.

3. Luis has to get up at 6 a.m. By what time should he go to
bed in order to get 8 hours of sleep?

4. These measures were printed on a soda pop bottle:
2 L (2.11 qt)
(a) Use words to write 2.11 qt.
(b) Compare: 2 L \bigcirc 2 qt

5. Write 8402 in expanded form. Then use words to write
the number.

6. Find the fourth multiple of 7. Then find the sixth
multiple of 6. Add these multiples. What is the square
root of the answer?

7. According to this calendar, what is
the date of the second Tuesday in
September 2042?

8. If $5 + N = 23$, then what number does $N - 5$ equal?

9. What is the perimeter of this
figure? Measurements are in feet.

10. Compare these fractions. Draw and shade two congruent
circles to show the comparison.
11. To what mixed number is the arrow pointing?

12. Draw a rectangle and shade about 30% of it.

13. \(0.47 + 3.62 + 0.85 + 4.54\)

14. \(\$3 + \$4.39 + \$12.62\)

15. \(36.47 - (3.5 + 12.6)\)

16. \(\$20.00 - (29\text{¢} + \$7)\)

17. \(41,059 - 36,275\)

18. \(\frac{768}{3}\)

19. \(\frac{2.80}{4}\)

20. \(\frac{436}{252}\)

21. \(5\overline{36}\)

22. \(7\overline{45}\)

23. \(4\overline{35}\)

24. (a) A quarter is what fraction of a dollar?
(b) A quarter is what percent of a dollar?

25. Two factors of 20 are 1 and 20, because

\[1 \times 20 = 20\]

Find four more factors of 20.

26. According to the census, the population of South Fork was 6781.
(a) Round 6781 to the nearest thousand.
(b) Round 6781 to the nearest hundred.

27. If \(4N = 24\), then which of these equations is not true?

A. \(\frac{24}{4} = N\)
B. \(\frac{24}{N} = 4\)
C. \(2N = 12\)
D. \(4N = 6\)

28. (a) Seven pennies are what fraction of a dollar?
(b) Seven pennies are what percent of a dollar?
(c) Write the value of seven pennies as a decimal part of a dollar.
Estimating Arithmetic Answers

NEW CONCEPT

We can estimate arithmetic answers by using rounded numbers instead of exact numbers to do the arithmetic. Estimating does not give us the exact answer, but it can give us an answer that is close to the exact answer. For some problems we encounter, an estimate is all that is necessary to solve the problem. When an exact answer is required, estimating is a way to find whether our exact answer is reasonable. Estimating is useful for many purposes. For example, it can help us to mentally track price totals when shopping for groceries.

Example 1 Estimate the sum of 396 and 512.

Solution To estimate, first we change the exact numbers to round numbers. We round 396 to 400 and 512 to 500. Then we find the estimated sum by adding 400 and 500.

\[
\begin{align*}
400 \\
+ 500 \\
\hline
900
\end{align*}
\]

The estimated sum of 396 and 512 is 900. The exact sum of 396 and 512 is 908. The estimated answer is not equal to the exact answer but it is close.

Facts Practice: 90 Division Facts (Test J)

Mental Math:

Subtract dollars and cents from dollars:

a. $5.00 – $3.95 b. $5.00 – $1.39 c. $10.00 – $8.75

d. $4.36 + $2.98 e. 475 – 125 f. 46 + 320 + 200

Problem Solving:

Can you find three ways to make a dollar with eight coins?
Lesson 59

Example 2 Estimate the product of 72 and 5.

Solution We round the two-digit number, but we generally do not round a one-digit number when estimating. The estimated product of 72 and 5 is 350.

The exact product of 72 and 5 is 360. The estimated product is a little less than the exact answer, 360, because 72 was rounded down to 70 for the estimate.

Example 3 To estimate 7×365, Bill multiplied 7 by 400. Was Bill’s estimate more than, equal to, or less than the actual product of 7 and 365?

Solution Bill’s estimate was more than the actual product of 7 and 365 because he rounded 365 up to 400 before multiplying.

Example 4 Estimate the answer to $43 \div 8$.

Solution To estimate division answers, we want to use numbers that divide easily. So we change the problem slightly. We keep the number we are dividing by, which is 8, and we change the number that is being divided, which is 43. We change 43 to a nearby number that can be divided easily by 8, such as 40 or 48. Using 40, the estimated answer is 5. Using 48, the estimated answer is 6. Since 43 is between 40 and 48, the exact answer is more than 5 but less than 6. That is, the exact answer is 5 plus a remainder.

LESSON PRACTICE

Practice set Estimate the answer to each arithmetic problem. Then find the exact answer.

a. $59 + 68 + 81$
 b. $607 + 891$

c. $585 - 294$
 d. $82 - 39$

e. 59×6
 f. 397×4

g. $42 \div 5$
 h. $29 \div 7$

i. Dixie estimated the product of 5 and 5280 by multiplying 5 by 5000. Was Dixie’s estimate more than, equal to, or less than the actual product? Why?
Problem set

1. There were forty-two apples in each big basket. There were seven big baskets. Altogether, how many apples were in the seven big baskets? Use a multiplication pattern to solve the problem.

2. There were forty-eight pears in all. Six pears were in each box. How many boxes were there? Use a multiplication pattern to solve the problem.

3. One mile is about 1.61 km.
 (a) Use words to write 1.61 km.
 (b) Compare: 1 mi \(\bigcirc \) 1 km

4. Estimate the product of 5 and 193 by rounding 193 to the nearest hundred before multiplying.

5. Compare: 50% of 16 \(\bigcirc \) \(\sqrt{16} \)

6. Subtract the third multiple of four from the second multiple of six. What is the difference?

7. How many years were there from 1492 to 1701? Use a subtraction pattern to solve the problem.

8. (a) Which angle in this figure appears to be a right angle?
 (b) Which segment in this figure does not appear to be perpendicular to \(AB \)?

9. Compare these fractions. Draw and shade two congruent rectangles to show the comparison.

\[
\frac{2}{5} \bigcirc \frac{1}{4}
\]

10. Janine could pack 40 packages in 1 hour. At that rate, how many packages could she pack in 5 hours? Use a multiplication pattern to solve the problem.

11. Use digits to write fifteen million, two hundred ten thousand.
12. One side of a rectangle is 2 miles long. Another side is 3 miles long. Draw the rectangle and show the length of each side. What is the perimeter of the rectangle?

13. $37.75 \quad 14. 43,793 \quad 15. 48.0$
 + $45.95 \quad + 76,860 \quad + 9.7$
 \hline
 $83.70 \quad 76,653 \quad 57.7$

16. $50.00 \quad 17. 43,793 \quad 18. 5.3$
 \(- $42.87 \quad \quad \quad - 26,860 \quad + 236.2$

19. $483 \times 4 \quad 20. 360 \times 4 \quad 21. 207 \times 8$

22. $8 \overline{43} \quad 23. 5 \overline{43} \quad 24. 7 \overline{43}$

24. (a) At 3 p.m. the thermometer showed this temperature. What was the temperature at 3 p.m.?

(b) From 3 p.m. to 6 p.m., the temperature dropped 4 degrees. What was the temperature at 6 p.m.?

25. Use a ruler to draw a line segment 4 in. long. Then draw a parallel segment 10 cm long.

26. One inch is 2.54 cm. A segment that is 4 in. long is how many centimeters long?

27. Compare: 4 inches \(\bigcirc \) 10 centimeters

28. (a) Nine pennies are what fraction of a dollar?

(b) Nine pennies are what percent of a dollar?

(c) Write the value of nine pennies as a decimal part of a dollar.
Rate Problems with a Given Total

WARM-UP

Facts Practice: 90 Division Facts (Test J)

Mental Math:
Subtract dollars and cents from dollars:
 a. $5.00 − $3.89 b. $10.00 − $7.25 c. $10.00 − $8.67
Review:
 d. 126 + 49 e. $5.95 + $3.76 f. 480 − 225

Problem Solving:
The question below is written in code. In the code 1 is A, 2 is B, 3 is C, and so on. After you decode the question, write the answer using the same code.

23-8-1-20 4-1-25 9-19 20-8-9-19?

NEW CONCEPT

Rate problems involving time consist of three quantities: a rate, an amount of time, and a total. If we know two of the quantities in a rate problem, we can find the third. We have practiced problems in which we were given the rate and the amount of time. We multiplied to find the total. In this lesson we will practice problems in which we are given the total. We will divide to find either the rate or the amount of time.

Example 1
Stanley can read 2 pages in 1 minute. How long will it take him to read 18 pages?

Solution
This is a rate problem. A rate problem is an “equal groups” problem.
We are told that Stanley can read 2 pages in 1 minute. This means the rate is 2 pages each minute. The total number of pages is 18. We are asked for the amount of time.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number in each time group</td>
<td>2 pages each minute</td>
</tr>
<tr>
<td>× Number of time groups</td>
<td>× N minutes</td>
</tr>
<tr>
<td>Total</td>
<td>18 pages</td>
</tr>
</tbody>
</table>
Now we find the missing number. To find the first or second number in an “equal groups” pattern, we divide.

\[
\begin{array}{c}
9 \\
2) 18 \\
\hline
18
\end{array}
\]

It will take Stanley 9 minutes to read 18 pages.

Example 2 Rebecca rode her bike 24 miles in 3 hours. Rebecca’s average riding rate was how many miles per hour?

Solution We are given the total distance Rebecca rode (24 miles) and the amount of time it took her (3 hours). We are asked for the average number of miles Rebecca rode in each hour.

\[
\begin{array}{ccc}
\text{PATTERN} & \text{PROBLEM} \\
\text{Number in each time group} & M \text{ miles each hour} \\
\times \text{ Number of time groups} & \times 3 \text{ hours} \\
\frac{\text{Total}}{} & 24 \text{ miles}
\end{array}
\]

To find the missing factor, we divide.

\[
24 \div 3 = 8
\]

Rebecca’s average riding rate was 8 miles per hour. Rebecca actually may have ridden more than 8 miles during one hour and less than 8 miles during another hour, but her average rate was 8 miles per hour.

LESSON PRACTICE

Practice set

a. Miguel can sharpen 5 pencils in a minute. How long will it take Miguel to sharpen 40 pencils?

b. The troop hiked 12 miles in 4 hours. The troop’s average rate was how many miles per hour?

c. Alexis was paid $40 for 5 hours of work. How much money was Alexis paid for each hour of work?

MIXED PRACTICE

Problem set

1. Fifty percent of an hour is how many minutes?

2. There were two hundred fourteen parrots, seven hundred fifty-two crows, and two thousand, forty-two blue jays. How many birds were there in all?
3. Letha could make four burritos with one pound of beans. How many pounds of beans would she need to make a dozen burritos?

4. Harry could paint 12 signs in 1 hour. At that rate, how many signs could he paint in 3 hours?

5. Round each number to the nearest hundred. Then add to estimate the sum of 286 and 415.

6. Which of these numbers is not a multiple of 2? How can you tell just by looking?
 A. 23 B. 24 C. 32 D. 46

7. Write the time “a quarter to seven in the morning” in digital form.

8. \(3N = 3 \times 5\)

9. The product of 6 and 7 is how much greater than the sum of 6 and 7?

10. What is the length of segment \(BC?\)

11. Compare: \((32 \div 8) \div 2 \bigcirc 32 \div (8 \div 2)\)

12. \$6.49 + $12 + $7.59 + 8¢

13. 6.5 + 4.75 + 11.3

14. 12.56 – 4.3

15. \[
\begin{array}{c}
350 \\
\times 5
\end{array}
\]

16. \[
\begin{array}{c}
204 \\
\times 7
\end{array}
\]

17. \[
\begin{array}{c}
463 \\
\times 6
\end{array}
\]

18. \(4 \overline{37}\)

19. \(6 \overline{39}\)

20. \(3 \overline{28}\)

21. (a) A nickel is what fraction of a dollar?
 (b) A nickel is what percent of a dollar?
22. Perfect squares have an odd number of factors. The numbers 9 and 25 are perfect squares. The three factors of 9 are 1, 3, and 9. What are the three factors of 25?

23. Compare: 5% $\bigcirc \frac{1}{2}$

24. (a) Find the perimeter of this rectangle.
 (b) Find the area of this rectangle.

25. Refer to figure $ABCD$ to answer (a) and (b).
 (a) What type of angle are angles A and C?
 (b) What type of angle are angles B and D?

26. If $N + 10 = 25$, then which of these equations is not true?
 A. $N + 11 = 26$ B. $N + 12 = 27$
 C. $N - 5 = 20$ D. $N + 9 = 24$

27. (a) Compare: $8 \div (4 \div 2) \bigcirc (8 \div 4) \div 2$
 (b) Look at your answer to part (a). Does the associative property apply to division?

28. (a) Nineteen pennies are what fraction of a dollar?
 (b) Nineteen pennies are what percent of a dollar?
 (c) Write the value of nineteen pennies as a decimal part of a dollar.
Focus on

Displaying Data Using Graphs

In this investigation we will practice finding information in different types of graphs. Then we will practice making graphs. The four types of graphs we will study are pictographs, bar graphs, line graphs, and circle graphs. The first three types usually have a rectangular shape. On these graphs look for titles, labels, scales, and units. You might also find a legend, or key, that tells what the symbols on the graph stand for.

We begin with a pictograph, which uses pictures to display information. The following pictograph shows the results of a survey of some students at Thompson School. The cafeteria manager wanted to know the favorite lunches of Thompson School students, so each student in Room 12 was asked to name his or her favorite lunch from the school menu. Each student could name one lunch. The pictograph shows how students in the class answered the question.

Choose a meal from the following menu and state the data you would like to collect. Then create a survey for your classmates.

Favorite School Lunches of Students in Room 12

1. What is the title of the pictograph?

2. How many different types of lunches are shown in the graph?

3. How can you tell how many students chose a particular lunch as their favorite lunch?
4. How many students named corn dogs as their favorite lunch? How did you find your answer?

5. “Pizza” was the favorite choice of how many students? How did you find your answer?

6. The pictograph shows the favorite lunches of how many students? How did you find your answer?

The information in the pictograph can also be shown in a bar graph like the one below. In this graph the bars are vertical (they go up and down). In some bar graphs the bars are horizontal (they go sideways). The words along the sides of the graph are **labels**. The labels tell what other words or numbers along the sides mean.

7. What is the label along the vertical left side of the graph?

8. Along the vertical left side of the graph are marks and numbers. What does the number 8 stand for?

9. Which bar is the longest and what does that mean?

10. The bar for pizza is longer than the bar for hamburgers. So there were more students who named pizza as their favorite lunch than students who named hamburgers. How many more students named pizza than named hamburgers? How did you find the answer?
The graph below is a line graph. Line graphs are often used to show information that changes over time. This graph shows Robert’s height from his birth until he was 10 years old. Notice that there is a vertical scale and a horizontal scale. The labels along these scales show the units (in parentheses) for the numbers along the scales. The change in Robert’s height is shown by the segments connecting the dots. The background grid makes the chart easier to read.

![Robert’s Height from Birth to Age Ten](image)

11. What does the 8 on the horizontal scale mean?

12. How tall was Robert on his fourth birthday? How did you find your answer?

13. During which year did Robert become 45 inches tall? How did you find the answer?

14. The graph of Robert’s height is steep during the first few years and then becomes less steep. What does the change in steepness mean about Robert’s growth?

We have looked at three rectangular graphs. Now we will look at a circle graph. A circle graph shows how a whole is divided into parts. A circle graph is sometimes called a pie graph. The “pie” is cut into “slices” that show the size of
the parts. In this circle graph we see how Vanessa usually spends a whole school day.

15. The “scale” on a circle graph is the size of the slices. Which slice of this circle graph is the largest, and what does it mean that it is the largest?

16. Together, school and homework amount to how many hours of Vanessa’s day?

17. What is the total number of hours represented by the entire circle graph?

18. According to the graph, Vanessa is awake about how many hours each day? How did you find the answer?

Activity: Displaying Information on Graphs

Materials needed:

- copies of Activity Masters 10 and 11 (1 copy of each master per student; masters available in *Saxon Math 5/4 Assessments and Classroom Masters*)

Activity Masters 10 and 11 are patterns for making the four kinds of graphs we have studied in this investigation. Use these patterns to make graphs for the following information.

Pictograph: The students in Room 12 were asked to name the drink they most liked to have with lunch. Eight students said “punch,” six said “water,” nine said “milk,” and seven said “juice.”
Display this information in a pictograph. Title the graph. List the drink choices along the vertical left side of the graph. Draw an object, like a cup, to represent the students’ drink preferences. You may use the same object for each category. Decide whether the picture will represent the choice of one student or more than one student, and show that information in a legend. Here is an example:

![Cup](image)

= choice of one student

Bar Graph: Diane asked the students in Room 15 how they travel to school in the morning. She found that six students walk, seven ride bikes, three ride skateboards, six travel by car, and seven ride the bus.

Display this information in a bar graph. Title the graph. Label the vertical and horizontal sides of the graph. Mark a scale and draw the bars.

Line Graph: Mr. Lopez ran a six-mile race. As he passed each mile mark of the race, he looked at his stopwatch to see how long he had been running. Here are the times Mr. Lopez read on his stopwatch at each mile mark:

<table>
<thead>
<tr>
<th>Mile</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mile</td>
<td>6 minutes</td>
</tr>
<tr>
<td>2 miles</td>
<td>13 minutes</td>
</tr>
<tr>
<td>3 miles</td>
<td>20 minutes</td>
</tr>
<tr>
<td>4 miles</td>
<td>28 minutes</td>
</tr>
<tr>
<td>5 miles</td>
<td>36 minutes</td>
</tr>
<tr>
<td>6 miles (finished race)</td>
<td>45 minutes</td>
</tr>
</tbody>
</table>

On a line graph, make the vertical scale represent the distance run in miles. Make the horizontal scale represent the time run in minutes. Let the lower-left corner of the scale be zero miles and zero minutes. Mark each scale with a sequence of numbers that allows the information to fit well on the graph. (For instance, let the distance between marks on the horizontal scale be 5 minutes.) Remember to title the graph.

Now make seven dots on the graph. One dot will be at the lower-left corner to show the start of the race. The other six dots will show the elapsed time at each mile mark. On the one-mile level of the graph, mark a dot at your best estimate for 6 minutes. On the two-mile level mark a dot up from 13 minutes. Continue
marking dots to the end of the race. After marking the dots, draw line segments from dot to dot, beginning at the lower-left corner and stopping at the dot for the end of the race. Every point along the line graph shows the approximate running time and distance run by Mr. Lopez at that point in the race.

Circle Graph: Jared made a schedule for school days. His schedule is shown below at left. Notice that the schedule has seven sections. Use the information in this schedule to make a circle graph of how Jared spends his day. Your circle graph should also have seven sections. The size of the sections should show the number of hours Jared spends on each activity. (The circle-graph pattern on Activity Master 11 has 24 marks to make it easier to divide the circle into sections. The distance from one mark to the next represents one hour.) Create a title for the graph, and label each section with Jared’s activity and the amount of time spent on that activity. Below we show an example with three of the seven sections completed.

Extensions

a. Students may bring examples of graphs from newspapers, magazines, or Web sites to show how different types of graphs are used to display information.

b. Students may generate or collect information (data) and create graphs to display the information.
NEW CONCEPTS

Remaining fraction The circle in the Problem Solving exercise above has a darkly shaded portion and a lightly shaded portion. If we know the size of one portion of a whole, then we can figure out the size of the other portion.

Example 1

(a) What fraction of the circle is shaded?

(b) What fraction of the circle is not shaded?

Solution We see that the whole circle has been divided into eight equal parts. Three of the parts are shaded, so five of the parts are not shaded.

(a) The fraction that is shaded is \(\frac{3}{8} \).

(b) The fraction that is not shaded is \(\frac{5}{8} \).

Example 2 The pizza was cut into eight equal slices. After Willis, Tony, and Jenny each took a slice, what fraction of the pizza was left?

Solution The whole pizza was cut into eight equal parts. Since three of the eight parts were taken, five of the eight parts remained. The fraction that was left was \(\frac{5}{8} \).
Example 3 Two fifths of the crowd cheered. What fraction of the crowd did not cheer?

Solution We think of the crowd as though it were divided into five equal parts. We are told that two of the five parts cheered. So there were three parts that did not cheer. The fraction of the crowd that did not cheer was $\frac{3}{5}$.

Two-step equations In this equation we need to find the quantity on the right side of the equation before we find the number for N:

$$2N = 7 + 5$$

So the first step is to add 7 and 5, which gives us 12. Then we have this equation:

$$2N = 12$$

The second step is to find N. Since $2 \times 6 = 12$, we know that N is 6.

$$N = 6$$

Example 4 Find M in the following equation: $3M = 4 \cdot 6$

Solution A dot is sometimes used between two numbers to indicate multiplication. So $4 \cdot 6$ means “4 times 6.” The product of 4 and 6 is 24.

$$3M = 4 \cdot 6$$

$$3M = 24$$

Now we find M. Three times 8 equals 24, so M equals 8.

$$M = 8$$

LESSON PRACTICE

Practice set a. What fraction of this rectangle is not shaded?

b. Three fifths of the race was over. What fraction of the race was left?

Find each missing number:

c. $2N = 2 + 8$

d. $2 + N = 2 \cdot 8$
MIXED PRACTICE

Problem set

1. The diameter of Filomena’s bicycle tire is 24 inches. What is the radius of the tire?

2. Five sparrows could crowd into each birdhouse. If there were thirty-five birdhouses, how many sparrows could crowd in?

3. (a) Two nickels are what fraction of a dollar?
(b) Two nickels are what decimal part of a dollar?

4. The Gilbreth family drank 39 quarts of milk in 3 days. That averages to how many quarts of milk each day?

5. Carl weighed 88 pounds. He put on his clothes, which weighed 2 pounds, and his shoes, which weighed 1 pound each. Finally he put on a jacket that weighed 3 pounds and stepped on the scale. How much did the scale show that he weighed?

6. What fraction of this rectangle is not shaded?

7. Which of these numbers is a multiple of 10?
 A. 2 B. 5 C. 25 D. 50

8. The pumpkin pie was sliced into 6 equal pieces. After 1 piece was taken, what fraction of the pie was left?

9. Compare these fractions. Draw and shade two congruent circles to show the comparison.

 \[\frac{2}{3} \quad \bigcirc \quad \frac{3}{4} \]

10. Estimate the sum of 5070 and 3840 by rounding each number to the nearest thousand before adding.

11. If 60% of the answers were true, then were there more true answers or more false answers?
12. (a) What is the perimeter of this rectangle?
(b) What is the area of this rectangle?

$+ 17.47\quad (24)$

15. $1000 - (110 \times 9)\quad 16. 3.675 - 1.76$

17. $6.70\quad 18. 703\quad 19. 346$
$\times 4\quad (58)\quad \times 6\quad (58)\quad \times 9\quad (58)$

20. $5\sqrt{39}\quad 21. 7\sqrt{39}\quad 22. 4\sqrt{39}$

23. $16 \div 3\quad 24. 26 \div 6\quad 25. 36 \div \sqrt{36}$

26. Point A represents what number on this number line?

27. Compare: $-5 \bigcirc -3$

28. (a) What fraction of the large square is not shaded?
(b) What percent of the large square is not shaded?
(c) The unshaded part of the large square represents what decimal number?
NEW CONCEPTS

Multiplying three or more factors

To find the product of three numbers, we first multiply two of the numbers. Then we multiply the answer we get by the third number. To multiply four numbers, we must multiply once more. In any multiplication we continue the process until no factors remain.

Example 1

Multiply: $3 \times 4 \times 5$

Solution

First we multiply two of the numbers to get a product. Then we multiply that product by the third number. If we multiply 3 by 4 first, we get 12. Then we multiply 12 by 5 and get 60.

\[
\begin{align*}
\text{Step 1} & \quad 3 \times 4 = 12 \\
\text{Step 2} & \quad 12 \times 5 = 60
\end{align*}
\]

It does not matter which two numbers we multiply first. If we multiply 5 by 4 first, we get 20. Then we multiply 20 by 3 and again get 60.

\[
\begin{align*}
\text{Step 1} & \quad 5 \times 4 = 20 \\
\text{Step 2} & \quad 20 \times 3 = 60 \quad \text{same answer}
\end{align*}
\]
The order of the multiplications does not matter because of the commutative property of multiplication, which we studied in Lesson 28.

Example 2 Multiply: $4 \times 5 \times 10 \times 10$

Solution We may perform this multiplication mentally. If we first multiply 4 by 5, we get 20. Then we multiply 20 by 10 to get 200. Finally we multiply 200 by 10 and find that the product is 2000.

Exponents An exponent is a number that shows how many times another number (the base) is to be used as a factor. An exponent is written above and to the right of the base.

\[\text{base} \rightarrow 5^2 \rightarrow \text{exponent} \]

5^2 means 5×5.

5^2 equals 25.

If the exponent is 2, we say “squared” for the exponent. So 5^2 is read as “five squared.” If the exponent is 3, we say “cubed” for the exponent. So 2^3 is read as “two cubed.”

Example 3 Simplify: $5^2 + 2^3$

Solution We will add five squared and two cubed. We find the values of 5^2 and 2^3 before adding.

5^2 means 5×5, which is 25.

2^3 means $2 \times 2 \times 2$, which is 8.

Now we add 25 and 8.

\[25 + 8 = 33 \]

Example 4 Rewrite this expression using exponents:

\[5 \times 5 \times 5 \]

Solution Five is used as a factor three times, so the exponent is 3.

5^3
LESSON PRACTICE

Practice set Simplify:

a. $2 \times 3 \times 4$

b. $3 \times 4 \times 10$

c. 8^2

d. 3^3

e. $10^2 - 6^2$

f. $3^2 - 2^3$

g. Rewrite this expression using exponents:

 $4 \times 4 \times 4$

MIXED PRACTICE

Problem set 1. There were twice as many peacocks as peahens. If there
were 12 peacocks, then how many peahens were there?

2. Beth’s dance class begins at 6 p.m. It takes 20 minutes to
 drive to dance class. What time should she leave home to
 get to dance class on time?

3. Mae-Ying bought a package of paper priced at $1.98
 and 2 pens priced at $0.49 each. The tax on the entire
 purchase was 18¢. What was the total cost of the items?

4. Nalcomb earns $3 a week for washing the car. How
 much money does he earn in a year of car washing?
 (There are 52 weeks in a year.)

5. Two thirds of the race was over. What fraction of the race
 was left?

6. Estimate the difference: $887 - 291$

7. In the equation $9 \times 11 = 100 - y$, the letter y stands for
 what number?

8. Compare: $\frac{2}{4} \bigcirc \frac{4}{8}$. Draw and shade two
 congruent circles to show the comparison.

9. What is the sum of the eighth multiple of 5 and the fourth
 multiple of 10?

10. According to this calendar, July 4, 2014, is what day of the week?
11. Write four multiplication/division facts using the numbers 6, 3, and 18.

12. $5 \times 6 \times 7$

13. 4^3

14. $476,385$

15. $\$20.00$

16. C

17. $\frac{4.17}{8}$

18. $\frac{470}{7}$

19. $\frac{608}{4}$

20. $\frac{10}{29}$

21. $\frac{865}{6}$

22. $\frac{529}{5}$

23. $\frac{65}{7}$

24. $\frac{39}{5}$

25. $\frac{65}{9}$

26. If 40% of the students are boys, then what percent of the students are girls?

27. (a) What is the perimeter of this square?

(b) What is the area of this square?

28. What type of angle is each angle of a square?

A. acute

B. right

C. obtuse

29. This bar graph shows the number of colored candies in a package. Use the bar graph to answer each question.

(a) How many red candies were there?

(b) There were how many more green candies than orange candies?
LESSON 63 Polygons

WARM-UP

Facts Practice: 90 Division Facts (Test J)

Mental Math:
Multiply four numbers, including two tens:
 a. $6 \times 4 \times 10 \times 10$ b. $3 \times 4 \times 10 \times 10$ c. $4 \times 5 \times 10 \times 10$

Review:
 d. $5.00 - 3.25$ e. $7.59 + 0.95$ f. $470 - 30$

Problem Solving:
Fifty percent of the students in Gabriel’s class are girls. Do we know how many students are in this class? Do we know whether there are more boys or more girls in the class? Do we know whether the number of students in the class is even or odd?

NEW CONCEPT

Polygons are closed, flat shapes formed by line segments.

Example 1 Which of these shapes is a polygon?

A.

B.

C.

D.

Solution Figure A is not a polygon because it is not closed. Figure B is not a polygon because it is not flat. Figure C is not a polygon because not all of its sides are straight. Figure D is a polygon. It is closed and flat, and all its sides are line segments.

Polygons are named according to the number of sides they have. The lengths of the sides may or may not be the same. If a polygon’s sides are all the same length and its angles are all the same size, it is called a regular polygon. The figure to the right in each row below is a regular polygon.

Three-sided polygons are triangles.
Example 2 What kind of a polygon is a square?

Solution A square has four sides, so a square is a quadrilateral. In fact, a square is a regular quadrilateral.

Each corner of a polygon is called a vertex (plural: vertices). A polygon has as many vertices as it has sides.

Example 3 An octagon has how many more vertices than a pentagon?

Solution An octagon has eight sides and eight vertices. A pentagon has five sides and five vertices. So an octagon has 3 more vertices than a pentagon.

LESSON PRACTICE

Practice set Draw an example of each of these polygons:

a. triangle b. quadrilateral c. pentagon

d. hexagon e. octagon f. decagon
Name each polygon shown:

\[g. \]
\[h. \]
\[i. \]
\[j. \]

k. Which figures in problems g–j appear to be regular polygons?

l. What common street sign has the shape of the polygon in problem j?

m. A decagon has how many more vertices than a hexagon?

MIXED PRACTICE

Problem set

1. Three feet equals 1 yard. A car that is 15 feet long is how many yards long?

2. Write four multiplication/division facts using the numbers 3, 10, and 30.

3. Roberta had six quarters, three dimes, and fourteen pennies. How much money did she have in all?

4. What is the sum of the even numbers that are greater than 10 but less than 20?

5. Estimate the sum of 715 and 594 by rounding the numbers to the nearest hundred and then adding.

6. Erin opened a 1-gallon bottle of milk and began filling glasses. Each glass held 1 cup of milk. Two cups equals a pint. Two pints equals a quart. Four quarts equals a gallon. How many glasses could Erin fill?

7. To what mixed number is the arrow pointing?

8. The cake was cut into 12 equal pieces. Seven of the pieces were eaten. What fraction of the cake was left?
9. The product of 4 and 3 is how much greater than the sum of 4 and 3?

10. What is the sum of 9^2 and $\sqrt{9}$?

11. (a) What is the name of this polygon?
 (b) Each side is the same length. What is the perimeter of this polygon?

12. Roger could pick 56 flowers in 8 minutes. At that rate, how many flowers could he pick in 1 minute?

13. Sarah could pick 11 flowers in 1 minute. At that rate, how many flowers could she pick in 5 minutes?

14. $40.00 - D = 2.43$

15. $5 \times N = 15 + \sqrt{25}$

16. $6 \times 4 \times 10$

17. 5^3

18. $3.5 + 2.45$

19. $1.95 - 0.4$

20. $1.00 - (0.36 + 0.57)$

21. 349×8

22. 7.60×7

23. $6\overline{34}$

24. $8\overline{62}$

25. $5\overline{24}$

26. $63 \div 7$

27. If 60% of the flowers that Sarah picked were red, what percent of the flowers that Sarah picked were not red?

28. Which of these numbers is a factor of 10?
 A. 3 B. 5 C. 15 D. 40

29. (a) What fraction of the large square is shaded?
 (b) What percent of the large square is not shaded?
LESSON

64 Division with Two-Digit Answers, Part 1

WARM-UP

Facts Practice: 90 Division Facts (Test J)

Mental Math:
Multiply two numbers ending in zero. (Example: 30 \times 40 equals 3 \times 10 times 4 \times 10. We rearrange factors to get 3 \times 4 \times 10 \times 10, which is 1200.)

a. 40 \times 40
b. 30 \times 50
c. 60 \times 70
d. 40 \times 50

Problem Solving:
This question is written in the code described in Lesson 60. After you decode the question, write the answer in the same code.

23-8-9-3-8
3-15-9-14
5-17-21-1-12-19
8-1-12-6
15-6
1
4-9-13-5?

NEW CONCEPT

In this lesson we will learn a pencil-and-paper method for dividing a two-digit number by a one-digit number. We will demonstrate the method as we solve this problem:

The seventy-eight fifth-graders at Washington School need to be divided equally among three classrooms. How many students should be in each room?

There are three numbers in this “equal groups” problem: the total number of students, the number of classrooms, and the number of students in each classroom.

Pattern:
Number of groups \times number in each group = total

Problem:
3 classrooms \times N students in each classroom = 78 students

To find the number of students in each classroom, we divide 78 by 3.

\[
3 \longdiv{78}
\]
For the first step we ignore the 8 and divide 7 by 3. We write “2” above the 7. Then we multiply 2 by 3 and write “6” below the 7. Then we subtract and write “1.”

\[
\begin{array}{c}
2 \\
\hline
3 \overline{78} \\
6 \\
1
\end{array}
\]

Next we “bring down” the 8, as shown here. Together, the 1 and 8 form 18.

\[
\begin{array}{c}
2 \\
\hline
3 \overline{78} \\
6 \\
\downarrow \\
18
\end{array}
\]

Now we divide 18 by 3 and get 6. We write the 6 above the 8 in 78. Then we multiply 6 by 3 and write “18” below the 18.

\[
\begin{array}{c}
26 \\
\hline
3 \overline{78} \\
6 \\
\downarrow \\
18 \\
\downarrow \\
18 \\
\downarrow \\
0
\end{array}
\]

We subtract and find that the remainder is zero. This means that if the students are divided equally among the classrooms, there will be 26 students in each classroom.

\[
78 \div 3 = 26
\]

Since division facts and multiplication facts form fact families, we may arrange these three numbers to form a multiplication fact:

\[
3 \times 26 = 78
\]

We can multiply 3 by 26 to check our work.

\[
\begin{array}{c}
1 \\
\hline
26 \\
\times \ 3 \\
\downarrow \\
78 \text{ check}
\end{array}
\]
Example 1 Divide 87 by 3. Then check your work.

Solution For the first step we ignore the 7. We divide 8 by 3, multiply, and then subtract. Next we bring down the 7 to form 27. Now we divide 27 by 3, multiply, and subtract again.

\[
\begin{array}{c}
29 \\
3)87 \\
61 \\
27 \\
27 \\
0
\end{array}
\]

The remainder is zero, so we see that 87 divides into 3 equal groups of 29.

Now we multiply 3 by 29 to check our work. If the product is 87, we can be confident that our division was correct.

\[
\begin{array}{c}
29 \\
\times 3 \\
87 \text{ check}
\end{array}
\]

Notice that there is no remainder when 87 is divided by 3. That is because 87 is a multiple of 3. We cannot identify the multiples of 3 by looking at the last digit, because the multiples of 3 can end with any digit. However, adding the digits of a number can tell us whether a number is a multiple of 3. If the sum is a multiple of 3, then so is the number. For example, adding the digits in 87 gives us 15 (8 + 7 = 15). Since 15 is a multiple of 3, we know that 87 is a multiple of 3.

Example 2 Which of these numbers can be divided by 3 with no remainder?

A. 56
B. 64
C. 45

Solution We add the digits of each number:

A. 5 + 6 = 11
B. 6 + 4 = 10
C. 4 + 5 = 9

Of the numbers 11, 10, and 9, only 9 is a multiple of 3. So the only choice that can be divided by 3 with no remainder is C. 45.
LESSON PRACTICE

Practice set* Divide:

a. 3\(\sqrt{51}\)
b. 4\(\sqrt{52}\)
c. 5\(\sqrt{75}\)
d. 3\(\sqrt{72}\)
e. 4\(\sqrt{96}\)
f. 2\(\sqrt{74}\)

g. Which of these numbers can be divided by 3 with no remainder? How do you know?

A. 75
B. 76
C. 77

MIXED PRACTICE

Problem set

1. A square mile is twenty-seven million, eight hundred seventy-eight thousand, four hundred square feet. Use digits to write that number of square feet.

2. Apollo’s target was one hundred thirteen paces away. If each pace was 3 feet, how many feet away was the target?

3. Tracy’s baseball card album will hold five hundred cards. Tracy has three hundred eighty-four cards. How many more cards will fit in the album?

4. The trip lasted 21 days. How many weeks did the trip last?

5. A stop sign has the shape of an octagon. How many sides do seven stop signs have?

6. Find the length of this hairpin to the nearest quarter inch:

7. Write 406,912 in expanded form. Then use words to write the number.

8. One foot equals 12 inches. If each side of a square is 1 foot long, then what is the perimeter of the square in inches?
9. Estimate the sum of 586 and 797 by rounding the numbers to the nearest hundred before adding.

10. Compare: \(\frac{3}{6} \bigcirc \frac{1}{2} \). Draw and shade two congruent circles to show the comparison.

11. Compare: \(50\% \text{ of } 100 \bigcirc \sqrt{100} \)

12. Some birds sat on the wire at sunup. After 47 more birds came there were 112 birds sitting on the wire. How many birds sat on the wire at sunup?

13. \(\$32.47 \bigcirc \$67.54 \)

14. \(51,036 \bigcirc -7,648 \)

15. \(53.6 \bigcirc 2.9 \)

16. \(5\overline{75} \)

17. \(3\overline{84} \bigcirc +436.1 \)

18. \(4\overline{92} \)

19. \(6\overline{58} \)

20. \(257 \times 5 \)

21. \(7.09 \times 3 \)

22. \(334 \times 9 \)

23. \(2\overline{36} \)

24. \(4N = 36 \)

25. \(4^2 + 2^3 \)

26. \(3.5 - (2.4 - 1.3) \)

27. Segments \(AB \) and \(BC \) are each \(1\frac{1}{2} \) in. long. How long is segment \(AC \)?

28. Three fourths of the game was over. What fraction of the game remained?

29. (a) What fraction of the large square is shaded?

(b) What percent of the large square is not shaded?

(c) What decimal number is represented by the shaded part of the square?
Divisor, Dividend, and Quotient • Division with Two-Digit Answers, Part 2

NEW CONCEPTS

The numbers in a division problem are named the divisor, the dividend, and the quotient.

\[
\frac{\text{quotient}}{\text{divisor}} \div \text{dividend} = \text{quotient}
\]

\[
\frac{\text{dividend}}{\text{divisor}} = \text{quotient}
\]

If we calculate how to divide 78 students among 3 classrooms, then 78 becomes the dividend and 3 becomes the divisor. The result, 26, is the quotient.

\[
\text{divisor} \quad 3 \overline{)78} \quad \text{quotient} \quad 26
\]

\[
\text{dividend} \quad 78
\]

The dividend is the number being divided. The divisor is the number by which the dividend is divided. The quotient is the result of the division.
Example 1 Identify the 8 in each of these problems as the *divisor*, *dividend*, or *quotient*:

(a) \(8 \div 2 = 4 \)
(b) \(8 \div 24 \)
(c) \(\frac{40}{5} = 8 \)

Solution
(a) *dividend*
(b) *divisor*
(c) *quotient*

Division with two-digit answers, part 2
We solve the following problem by dividing:

On a three day bike trip Hans rode 234 kilometers. Hans rode an average of how many kilometers each day?

We find the answer by dividing 234 by 3.

\[
3 \overline{)234}
\]

To perform the division, we begin by dividing \(3 \overline{)23} \). We write “7” above the 3 of 23. Then we multiply and subtract.

\[
\begin{array}{c}
7 \\
3 \overline{)234} \\
21 \\
2
\end{array}
\]

Next we bring down the 4.

\[
\begin{array}{c}
7 \\
3 \overline{)234} \\
21 \downarrow \\
24
\end{array}
\]

Now we divide 24 by 3. We write “8” above the 4. Then we multiply and finish by subtracting.

\[
\begin{array}{c}
78 \\
3 \overline{)234} \\
21 \\
24 \\
24 \\
0
\end{array}
\]

We find that Hans rode an average of 78 kilometers each day.
We can check our work by multiplying the quotient, 78, by the divisor, 3. If the product is 234, then our division answer is correct.

\[
\begin{array}{c}
78 \\
\times \; 3 \\
234 \; \text{check}
\end{array}
\]
Example 2 Divide 468 by 9. Then check your answer.

Solution We begin by finding \(9 \overline{)46}\). We write “5” above the 6 in 46. Then we multiply and subtract.

\[
\begin{array}{c}
5 \\
9 \overline{)468} \\
45 \\
1
\end{array}
\]

Next we bring down the 8. Now we divide 18 by 9.

\[
\begin{array}{c}
52 \\
9 \overline{)468} \\
45 \underline{18} \\
18 \\
18 \\
0
\end{array}
\]

We see that 468 divides into 9 equal groups of 52.

We check the division by multiplying 52 by 9, looking for 468 as the answer.

\[
\begin{array}{c}
1 \\
52 \\
\times 9 \\
\underline{468} \\
\text{check}
\end{array}
\]

We see that there is no remainder when 468 is divided by 9. That is because 468 is a multiple of 9. Just as we identified multiples of 3 by adding the digits of a number, we can identify multiples of 9 by adding the digits. For the number 468, we have

\[4 + 6 + 8 = 18\]

The sum 18 is a multiple of 9, so 468 is a multiple of 9.

Example 3 Which of these numbers is a multiple of 9?

A. 123 B. 234 C. 345

Solution We add the digits of each number:

A. 1 + 2 + 3 = 6
B. 2 + 3 + 4 = 9
C. 3 + 4 + 5 = 12

The sums 6, 9, and 12 are all multiples of 3, but only 9 is a multiple of 9. Therefore, only B. 234 is a multiple of 9 and can be divided by 9 without a remainder.
LESSON PRACTICE

Practice set* In the division fact $32 \div 8 = 4$,

a. what number is the divisor?

b. what number is the dividend?

c. what number is the quotient?

Divide:

d. $3 \overline{)144}$ e. $4 \overline{)144}$ f. $6 \overline{)144}$

g. $225 \div 5$ h. $455 \div 7$ i. $200 \div 8$

j. Which of these numbers can be divided by 9 without a remainder? How do you know?

A. 288 B. 377 C. 466

MIXED PRACTICE

Problem set

1. The chef uses 3 eggs for each omelette. How many omelettes can he make with 24 eggs?

2. Seventy-two young knights met peril in the forest. Twenty-seven fought bravely, but the others fled. How many young knights fled?

3. Armando wore braces for 3 years. For how many months did he wear braces?

4. Freddy bought a book for $12.89 and a folder for $3.95. Estimate how much money Freddy spent by rounding each amount to the nearest dollar before adding.

5. Fanga ran 28 miles in 4 hours. She ran at a rate of how many miles per hour?

6. Mallory bought ballet shoes for $18.95 and tap shoes for $42.85. How much did she pay for both pairs of shoes?
7. What fraction of this hexagon is not shaded?

8. Each side of the hexagon in problem 7 is 1 cm long. What is its perimeter?

9. Jim started walking early in the morning and did not stop until later that morning. How much time did Jim spend walking?

10. Nigel drew a circle with a radius of 18 inches. What was the diameter of the circle?

11. How long is segment BC?

12. Which of these words names the answer to a division problem?
 A. product B. dividend C. divisor D. quotient

13. Compare: $27 \div 3^2 \bigcirc 27 \div \sqrt{9}$

14. $97.56 + \$8.49 = \106.05

15. $60.00 - \$54.78 = \5.22

16. $37.64 + 3.01 = 40.65$

17. $168 \div 3 = 56$

18. $378 \div 7 = 54$
19. \(840 \times 3 \)
20. \(4 \times 564 \)
21. \(304 \times 6 \)

22. \(4 \sqrt{136} \)
23. \(2 \sqrt{132} \)
24. \(6 \sqrt{192} \)

25. \(7N = 56 \)

26. \(12 \times 7 \times 10 \)

27. Dooley awoke to a cold morning. He glanced out the window at the thermometer. What temperature is shown on this thermometer?

![Thermometer Image]

28. (a) Three quarters are what fraction of a dollar?
(b) Three quarters are what percent of a dollar?

29. Draw a quadrilateral. A quadrilateral has how many vertices?
LESSON

66

Similar and Congruent Figures

WARM-UP

Facts Practice: 90 Division Facts (Test J)

Mental Math:
Multiply numbers ending in two zeros by numbers ending in one zero:

a. 200 × 10
b. 300 × 20
c. 400 × 50

Review:

d. 250 × 10
e. $1.00 + $0.29
f. $4.47 + $2.95

Patterns:

Counting by fives from 5, we say this sequence:

5, 10, 15, 20, 25, 30, ...

If we count by fives from 1, we say this sequence:

1, 6, 11, 16, 21, 26, ...

What sequence do we say when we count by fives from 2?

NEW CONCEPT

Look at these four triangles:

Triangle A and triangle B have matching angles. Triangle B is an enlarged version of triangle A. We could use a magnifying glass to make Triangle A look like triangle B. We say that triangle A and triangle B are similar. They are not exactly alike, though, since the sides of triangle B are longer than the sides of triangle A.

Triangles A and C also have matching angles, so they are similar. Since triangles A and C are the same size and have the same shape, we say that they are congruent in addition to being similar.
Triangle A and triangle D are not similar. Neither one is an enlarged version of the other. Looking at either triangle through a magnifying glass cannot make it look like the other, because their angles do not match.

Example
(a) Which of these rectangles are similar?

(b) Which of these rectangles are congruent?

Solution
(a) Rectangles B, C, and D are similar. Rectangle A is not similar to the other three rectangles because it is not a “magnified” version of any of the other rectangles.

(b) Rectangle B and rectangle D are congruent, because they have the same shape and size.

LESSON PRACTICE

Practice set Refer to the figures below to answer problems a and b.

a. Which of these triangles are similar?

b. Which of these triangles are congruent?

MIXED PRACTICE

Problem set
1. With his bow and arrow William Tell split 10 apples in half. How many apple halves were there?

2. Every third bead on the necklace was red. There were one hundred forty-one beads in all. How many beads were red? (Make equal groups of three.)

3. Twenty-five percent of this square is shaded. What percent of the square is not shaded?
4. Big Fox chased Little Rabbit 20 kilometers north, then 15 kilometers south. How far was Big Fox from where he started? (Draw a diagram to help solve the problem.)

5. At 11:45 a.m. Jason glanced at the clock. His doctor’s appointment was in $2\frac{1}{2}$ hours. At what time was his appointment?

6. In the figure below we do not state the size of the units used to measure the rectangle. Find the perimeter and area of the rectangle. When writing your answers, use the terms units or square units instead of terms for standard units, such as inches and square inches.

![Diagram of a rectangle with 6 units and 3 units]

7. The car could go 30 miles on 1 gallon of gas. How far could the car go on 8 gallons of gas?

8. Two sevenths of the crowd cheered wildly. The rest of the crowd stood silently. What fraction of the crowd stood silently?

9. Forty-two glops were required to make a quart of good glue. Jean needed a gallon of good glue. How many glops did she need?

10. Compare: $\frac{1}{2} \bigcirc \frac{2}{5}$. Draw and shade two congruent rectangles to show the comparison.

11. $N + 2 = 3 \times 12$

12. $6.42 - (3.3 - 1.5)$

13. $\sqrt{81} + 82 + 3^2$

14. $10 - 10\cent$

15. $43,016 - 5987$

16. $24 \times 3 \times 10$

17. 4.86×7

18. 307×8

19. 460×9

20. $2 \overline{152}$

21. $6 \overline{264}$

22. $4 \overline{56}$

23. $230 \div 5$

24. $91 \div 7$

25. $135 \div 3$
26. Write each amount of money using a dollar sign and a decimal point:
 (a) 17¢ (b) 8¢ (c) 345¢

27. Use words to name each number:
 (a) 2 3/10 (b) 2.3

28. Which two triangles are similar?
 A. B. C. D.

29. Draw a pentagon. A pentagon has how many vertices?
We remember that the multiples of 10 are the numbers we say when we count by tens starting from 10. The last digit in every multiple of 10 is a zero. The first five multiples of 10 are

10, 20, 30, 40, 50

We may think of 20 as 2 \times 10. So to find 34 \times 20, we may look at the problem this way:

34 \times 2 \times 10

We multiply 34 by 2 and get 68. Then we multiply 68 by 10 and get 680.

Example 1 Write 25 \times 30 as a product of 10 and two other factors. Then multiply.

Solution Since 30 equals 3 \times 10, we may write 25 \times 30 as

25 \times 3 \times 10

Three times 25 is 75, and 75 times 10 is 750.
To multiply a whole number or a decimal number by a multiple of 10, we may write the multiple of 10 so that the zero “hangs out” to the right. Below we use this method to find 34 × 20.

\[
\begin{array}{c}
34 \\
\times 20 \\
\hline
\end{array}
\quad \text{zero “hangs out” to the right}
\]

We first write a zero in the answer directly below the “hanging” zero.

\[
\begin{array}{c}
34 \\
\times 20 \\
\hline
0
\end{array}
\]

Then we multiply by the 2 in 20.

\[
\begin{array}{c}
34 \\
\times 20 \\
\hline
680
\end{array}
\]

Example 2 Multiply: 30 × 34

Solution We write the multiple of 10 as the bottom number and let the zero “hang out.”

\[
\begin{array}{c}
34 \\
\times 30 \\
\hline
1 \cdot 34 \\
\times 30 \\
\hline
1020
\end{array}
\]

Next, we write a zero in the answer directly below the zero in 30. Then we multiply by the 3. Our answer is 1020.

Example 3 Multiply: $1.43 \times 20

Solution We write the multiple of 10 so that the zero “hangs out.” We write a zero below the bar, and then we multiply by the 2. We place the decimal point so that there are two digits after it. Finally, we write a dollar sign in front and get $28.60.

\[
\begin{array}{c}
1.43 \\
\times 20 \\
\hline
28.60
\end{array}
\]

LESSON PRACTICE

Practice set* In problems a–f, multiply the factors.

a. 75 × 10
 b. 10 × 32
 c. 10 × 53¢
d. \[
\begin{array}{c}
26 \\
\times 20
\end{array}
\]

e. \[
\begin{array}{c}
$1.64 \\
\times 30
\end{array}
\]
f. \[
\begin{array}{c}
45 \\
\times 50
\end{array}
\]

g. Write \(12 \times 30\) as a product of 10 and two other factors. Then multiply.

MIXED PRACTICE

Problem set

1. Seventy-five beans were equally divided into five pots. How many beans were in each pot?

2. Find the perimeter and area of this rectangle. Remember to label your answer with “units” or “square units.”

3. The server placed a full pitcher of water on the table. Which of the following is a reasonable estimate of the amount of water in the pitcher?

 A. 2 gallons B. 2 quarts C. 2 cups D. 2 ounces

4. Which of these numbers is not a factor of 12?

 A. 6 B. 5 C. 4 D. 3

5. The starting time was before dawn. The stopping time was in the afternoon. What was the difference in the two times?

6. One square mile is 3,097,600 square yards. Use words to write that number of square yards.
7. What fraction of this pentagon is not shaded?

8. Is the shaded part of this pentagon more than 50% or less than 50% of the pentagon?

9. According to this calendar, what is the date of the last Saturday in July 2019?

10. To what mixed number is the arrow pointing?

11. Estimate the product of 78 and 4 by rounding 78 to the nearest ten before multiplying by 4.

12. Compare: 2\(\frac{3}{4}\) \(\bigcirc\) 2 \(\times\) 3

13. \$6.25 + \$4 + \$12.78

14. 3.6 + 12.4 + 0.84

15. \$30.25 \[\frac{-B}{\text{}}\] \$13.06

16. 149,384 \[\frac{-98,765}{\text{}}\] 409

17. \(\frac{409}{70}\)

18. 5 \(\times\) \$3.46

19. \$0.79 \(\times\) 6

20. 10 \(\times\) 39¢

21. \(\frac{6.90}{\text{}}\)

22. \(\frac{4.96}{\text{}}\)

23. \(\frac{8456}{\text{}}\)

24. 95 \(\div\) 5

25. 234 \(\div\) 3

26. Name the shaded part of this rectangle as a fraction and as a decimal.
27. Which two figures are congruent?

A. \[\triangle\]
B. \[\triangle\]
C. \[\square\]
D. \[\triangle\]

28. How much money is \(\frac{1}{4}\) of a dollar?

29. Draw a hexagon. A hexagon has how many vertices?

30. Sean is using a line graph to keep a record of his test scores. There are 20 questions on each test. According to Sean’s line graph, how many correct answers did he have on Test 3?
Division with Two-Digit Answers and a Remainder

NEW CONCEPT

The pencil-and-paper method we use for dividing has four steps: divide, multiply, subtract, and bring down. The steps are repeated until the division is complete.

Step 1. Divide.

Step 2. Multiply.

Step 3. Subtract.

For each step we write a number. When we finish Step 4, we go back to Step 1 and repeat the steps until there are no more digits to bring down. The number left after the last subtraction is the remainder. We show the remainder in the division answer by writing it with an uppercase “R” in front.
Lesson 68

Example
Divide: $5 \overline{)137}$

Solution
Step 1: Divide 13 by 5 and write “2.”

Step 2: Multiply 2 by 5 and write “10.”

Step 3: Subtract 10 from 13 and write “3.”

Step 4: Bring down 7 to make 37.

Now we repeat the same four steps:

Step 1: Divide 37 by 5 and write “7.”

Step 2: Multiply 7 by 5 and write “35.”

Step 3: Subtract 35 from 37 and write “2.”

Step 4: There are no more digits to bring down, so we will not repeat the steps. The remainder is 2, so our answer is $27 \text{ R } 2$.

If we divide 137 into 5 equal groups, there will be 27 in each group. There will also be 2 extra.

To check a division answer that has a remainder, we multiply the quotient (without the remainder) by the divisor and then add the remainder. For this example we multiply 27 by 5 and then add 2.

$$
\begin{array}{c}
27 \\
\times 5 \\
\hline
135 \\
\end{array}
\begin{array}{c}
135 \\
+ 2 \\
\hline
137 \text{ check}
\end{array}
$$

LESSON PRACTICE

Practice set*
Divide:

a. $3 \overline{)134}$
b. $7 \overline{)240}$
c. $5 \overline{)88}$

d. $259 \div 8$
e. $95 \div 4$
f. $325 \div 6$

g. Grey divided 235 by 4 and got 58 R 3 for her answer. Describe how to check Grey’s calculation.

MIXED PRACTICE

Problem set
1. It took four spoonfuls to make one batch. How many spoonfuls were required to make 40 batches?

2. Find the perimeter and area of this rectangle:

 (Inv. 2, Inv. 3)
3. Angela ran 100 meters in twelve and fourteen hundredths seconds. Use digits to write her time for 100 meters.

4. Maura ran \(\frac{3}{5} \) of the course but walked the rest of the way. What fraction of the course did she walk?

5. In problem 4, did Maura run more than 50% of the course or less than 50% of the course?

6. Jimmy drew an octagon and a pentagon. What was the total number of sides in the two polygons?

7. To what mixed number is the arrow pointing?

8. Mount Rainier stands four thousand, three hundred ninety-two meters above sea level. Use digits to write that number of meters.

9. Abigail could make 35 prizes in 7 minutes. How many prizes could she make in 1 minute?

10. Estimate the sum of 6810 and 9030 by rounding each number to the nearest thousand before adding.

11. \(\$20 - (\$8.95 + 75\text{¢}) \)

12. \(5^2 - 4^2 \)

13. \(23.64 - 5.45 \)

14. \(\frac{43\text{¢}}{8} \)

15. \(\frac{\$3.05}{5} \)

16. \(\frac{\$2.63}{7} \)

17. Rewrite this addition problem as a multiplication problem and find the answer.

\[64 + 64 + 64 + 64 + 64 \]
18. 47×30
19. 60×39
20. 85×40

21. $5\sqrt{96}$
22. $7\sqrt{156}$
23. $3\sqrt{246}$

24. $\frac{216}{6}$
25. $156 \div 4$
26. $195 \div 8$

27. Use an inch ruler to find the lengths of segments AB, BC, and AC.

28. Which word makes the following sentence untrue?

 All squares are ___________.

 A. polygons
 B. rectangles

 C. similar
 D. congruent

29. Compare: 2 liters $\bigcirc \frac{1}{2}$ gallon

30. Draw an octagon. An octagon has how many vertices?
LESSON 69

Millimeters

WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:
Multiply three numbers:
 a. $21 \times 2 \times 10$
 b. $25 \times 2 \times 10$
 c. $12 \times 4 \times 10$

Review:
 d. $30 \times 30 \times 30$
 e. $10.00 - 2.99$
 f. $7.16 + 1.99$

Problem Solving:
The parking lot charged $1.50 for the first hour and 75¢ for each additional hour. Harold parked the car in the lot from 11 a.m. to 3 p.m. How much did he have to pay?

NEW CONCEPT

This line segment is one centimeter long:

If we divide a centimeter into ten equal lengths, each equal length is 1 millimeter long. A dime is about 1 millimeter thick.

The words centimeter and millimeter are based on Latin words. Centum is the Latin word for “hundred.” A centimeter is one hundredth \(\frac{1}{100}\) of a meter, just as a cent is one hundredth of a dollar. Mille is the Latin word for “thousand.” A millimeter is one thousandth \(\frac{1}{1000}\) of a meter, just as a milliliter is one thousandth of a liter.

Here we show a millimeter scale and a centimeter scale:
We can see from the scales that each centimeter equals ten millimeters. Also, notice that the abbreviation “mm” is used for \textit{millimeter}.

\textbf{Example 1} \ The segment below is how many millimeters long?

\begin{center}
\begin{tabular}{c}
\textbf{Example 1} \ The segment below is how many millimeters long?
\end{tabular}
\end{center}

\begin{align*}
\textbf{Solution} & \quad \text{The length of the segment is } 35 \text{ mm}. \\
\end{align*}

\textbf{Example 2} \ This paper clip is 3 cm long. How many millimeters long is it?

\begin{align*}
\textbf{Solution} & \quad \text{Each centimeter is 10 mm. We multiply 10 mm by 3 to find that the length of the paper clip is } 30 \text{ mm}. \\
\end{align*}

Using the scales below, we see that a segment that is 25 mm long is \(2 \frac{5}{10}\) cm long.

We usually write metric measures as decimal numbers instead of fractions. So a 25-mm segment is 2.5 cm long.

\textbf{Example 3} \ Write the length of this segment

(a) \ in millimeters.

(b) \ in centimeters.

\begin{align*}
\textbf{Solution} & \quad \text{(a) } 32 \text{ mm} \\
& \quad \text{(b) } 3.2 \text{ cm}
\end{align*}
Example 4 Write a decimal subtraction problem that shows how to find the length of segment BC.

Solution Segment AC is 4.8 cm long. Segment AB is 2.1 cm long. If we “take away” segment AB from segment AC, what is left is segment BC. So we subtract 2.1 cm from 4.8 cm.

$$4.8 - 2.1 = 2.7$$

We find that segment BC is 2.7 cm long.

LESSON PRACTICE

Practice set a. The thickness of a dime is about 1 mm. Estimate the number of dimes it would take to form a stack that is about 1 cm high.

b. Write the length of this segment twice, once in millimeters and once in centimeters.

c. Each side of this square is 1 cm long. What is the perimeter of this square in millimeters?

d. The diameter of a penny is about 19 mm. How many centimeters is that?

e. Write a decimal subtraction problem that shows how to find the length of segment XY.
Lesson 69 325

MIXED PRACTICE

Problem set

1. Maggie’s house key is 5.2 cm long. How many millimeters long is her house key?

2. Tracy has three hundred eighty-four baseball cards. Nathan has two hundred sixty baseball cards. Tracy has how many more cards than Nathan?

3. Forty-two students could ride in one bus. There were 30 buses. How many students could ride in all the buses?

4. To what number is the arrow pointing?

5. Copy this hexagon and shade one sixth of it.

6. (a) This match is how many centimeters long?
 (b) This match is how many millimeters long?

7. Twenty-five percent of the students earned an A. What percent of the students did not earn an A?

8. One yard equals 3 feet. If each side of a square is 1 yard long, then what is the perimeter of the square in feet?

9. Estimate the sum of 412, 695, and 379 by rounding each of the three numbers to the nearest hundred before adding.

10. Segment AB is 3.5 cm long. Segment AC is 11.6 cm long. How long is segment BC? Write a decimal subtraction problem and find the answer.
11. Hugo rode 125 miles in 5 hours. His average speed was how many miles per hour?

12. Urgo could go 21 miles in 1 hour. At that rate, how many miles could Urgo go in 7 hours?

13. Christina’s meal cost $7.95. Tom’s meal cost $8.95. Estimate the total price for both meals by rounding each amount to the nearest dollar before adding.

14. \(\frac{250}{6} \)
15. \(\frac{100}{9} \)
16. \(\frac{36.2}{43} \)
17. \(\frac{256}{8} \)
18. \(4W = 60 \)
19. \(9 \times 4.63 \)
20. \(80 \times 29\text{c} \)
21. \(10.00 - 1.73 \)
22. \(36,428 - 27,338 \)
23. \(78 \times 60 \)
24. \(4\sqrt{328} \)
25. \(7\sqrt{375} \)
26. \(5\sqrt{320} \)
27. \(A + 5 = 25 + 25 \)
28. \(4.7 - (3.6 - 1.7) \)
29. (a) Find the perimeter of this rectangle in millimeters.
 (b) Find the area of this rectangle in square centimeters.
30. Each angle of this triangle is
 A. acute B. right C. obtuse
LESSON 70
Stories About a Fraction of a Group

WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:

- a. 300×30
- b. 240×10
- c. $11 \times 4 \times 10$
- d. $\$10.00 - \9.28
- e. $\$3.75 + \2.95
- f. $467 - 63$

Problem Solving:

Henry has ten coins that total one dollar, but only one of the coins is a dime. What are the other nine coins?

NEW CONCEPT

We know that the fraction $\frac{1}{2}$ means that a whole has been divided into 2 parts. To find the number in $\frac{1}{2}$ of a group, we divide the total number in the group by 2. To find the number in $\frac{1}{3}$ of a group, we divide the total number in the group by 3. To find the number in $\frac{1}{4}$ of a group, we divide the total number in the group by 4, and so on.

Example 1 One half of the carrot seeds sprouted. If 84 seeds were planted, how many seeds sprouted?

Solution We will begin by drawing a picture. The large rectangle stands for all the seeds. We are told that $\frac{1}{2}$ of the seeds sprouted, so we divide the large rectangle into 2 equal parts (into halves). Then we divide 84 by 2 and find that 42 seeds sprouted.

Example 2 One third of the 27 students earned an A on the test. How many students earned an A on the test?
Solution We start with a picture. The whole rectangle stands for all the students. Since $\frac{1}{3}$ of the students earned an A, we divide the rectangle into 3 equal parts. To find how many students are in each part, we divide 27 by 3 and find that 9 students earned an A on the test.

Example 3 One fourth of the team’s 32 points were scored by Molly. Molly scored how many points?

Solution We draw a rectangle. The whole rectangle stands for all 32 points. Molly scored $\frac{1}{4}$ of the points, so we divide the rectangle into 4 equal parts. We divide 32 by 4 and find that each part is 8 points. Molly scored 8 points.

Example 4 What is $\frac{1}{5}$ of 40?

Solution We draw a rectangle to stand for 40. We divide the rectangle into five equal parts, and we divide 40 by 5. Each part is 8, so $\frac{1}{5}$ of 40 is 8.

LESSON PRACTICE

Practice set Draw a picture to help you solve each problem:

a. What is $\frac{1}{3}$ of 60?
b. What is $\frac{1}{2}$ of 60?

c. What is $\frac{1}{4}$ of 60?
d. What is $\frac{1}{5}$ of 60?
e. One half of the 32 children were boys. How many boys were there?

f. One third of the 24 coins were quarters. How many quarters were there?

MIXED PRACTICE

Problem set

1. Forty-two million is how much greater than twenty-four million?

2. There were 150 seats at the Round Table. If 128 seats were filled, how many seats were empty?

3. Angela ran 100 meters in 12.14 seconds. Marion ran 100 meters in 11.98 seconds. Marion ran 100 meters how many seconds faster than Angela?

4. Keenan bought his lunch Monday through Friday. If each lunch cost $1.25, how much did he spend on lunch for the week?

5. Find the perimeter and area of this rectangle:

6. Rhonda read 30 pages a day on Monday, Tuesday, and Wednesday. She read 45 pages on Thursday and 26 pages on Friday. How many pages did she read in all?

7. One half of the cabbage seeds sprouted. If 74 seeds were planted, how many sprouted? Draw a picture to help you solve the problem.

8. In problem 7, what percent of the seeds sprouted?

9. What is $\frac{1}{6}$ of 60? Draw a picture to help you solve the problem.

10. Driving at a highway speed limit of 65 miles per hour, how far can a truck travel in 3 hours?
11. If a truck traveled 248 miles in 4 hours, then the truck traveled an average of how many miles each hour?

12. (a) What is the diameter of this shirt button in centimeters?

(b) What is the radius of this shirt button in millimeters?

13. Segment AB is 2.7 cm long. Segment BC is 4.8 cm long. How long is segment AC? Write a decimal addition problem and find the answer.

A \quad B \quad C

14. $8 + 9.48 + 79¢$

15. $5.36 + 2.1 + 0.43$

16. $100.00 - 59.47$

17. $37,102 - 18,590$

18. $\sqrt{49} \times 2^3$

19. 1.63×40

20. 60×39

21. $7 \times $2.56

22. $3 \overline{89}$

23. $9 \overline{234}$

24. $\frac{90}{6}$

25. $243 \div 7$

26. $355 \div 5$

27. $7 + N = 28$

28. Write twelve and three tenths as a mixed number and as a decimal number.

29. Which of these numbers is a factor of both 12 and 20?

 A. 3 B. 4 C. 5 D. 6

30. Draw a triangle that has one right angle.
Focus on

Collecting Data with Surveys

In Investigation 6 a pictograph displayed the favorite lunches of the students in Room 12. The information in the graph was gathered by asking students to name their favorite lunch from the school menu. The students who answered the question were participating in a survey. A survey is an effort to gather specific information about a group, called a population. People who create the survey collect information about part of the population, called a sample. Then they draw conclusions about how the results of the survey apply to the whole population. In the favorite-lunch survey, the students in Room 12 were the sample, while all Thompson School students were the population.

In this investigation you will conduct a survey of students in your class. You will need to write questions for the survey, ask the questions fairly, record the answers, and display the results of the survey. From the survey you may be able to draw conclusions about a larger population.

How survey questions are asked can affect the results of a survey. Here are two survey questions. Describe how the answers to these questions might be different.

Notice that one of the questions is a multiple-choice question. The answer is limited to the choices that are provided. The other question is open to many answers.

1. Write two questions that you could ask to determine students’ favorite drink to have with lunch. For one question, provide options to choose from. For the other, leave the question open (do not list options). You may use the favorite-lunch questions as models.
Survey questions should be phrased without bias, that is, without favoring one choice over another.

2. Describe the bias in the following question:

 Which drink do you prefer with lunch: cool, sweet lemonade or milk that has been out of the refrigerator for an hour?

3. Rewrite the question in problem 2 in order to remove the bias.

 When we use a sample to find information about a larger population, we need to be careful that the sample is very similar to the population. For example, if we wanted to know the favorite TV show of kindergarten students, we would not survey a group of fourth-grade students.

4. For your survey you will collect answers from students in your class. This means that your class is the sample. So your survey results will probably apply best to which of these larger populations? (For each choice, state why or why not the larger population is like your sample.)

 A. All the students in the school.
 B. All the school children your age in your community.
 C. All the children your age in the country.
 D. All the parents of the students in the class.

 When we ask our survey questions, we need to have a way to record the answers. One way to keep track of answers is with a tally sheet. On a tally sheet we make tally marks. A tally mark is a short vertical mark that counts as one. Two marks count as two. Four marks with a fifth, diagonal mark crossing them count as five. Here is an example of a tally sheet for the favorite-lunch question:

 ![Tally Sheet Example]

 Question: Which of these school lunches is your favorite?
 - pizza, hamburgers, tacos, corn dogs

 Answer:
 - pizza
 - hamburgers
 - tacos
 - corn dogs
The question was written on the tally sheet so that it could be read to the person being interviewed. By reading the question from a sheet, we make sure that we ask the question the same way each time.

5. Each time a person answers the question, a tally mark is placed by the answer. Look at the tally marks for pizza. According to the tally marks, how many students named pizza as their favorite lunch?

6. Create a tally sheet similar to the one above to show favorite drinks to have with lunch. Write a question with choices. Then list the possible answers, leaving room on the paper to tally the answers. One of the options may be “no opinion.”

Activity: Class Survey

Have small groups of students create a survey question to ask other students in the class.† The question should provide two or more options from which to select. The question should be free of bias. Have each group make a tally sheet that contains the question and the answer choices. After approving the tally sheet for each group, provide time for students to interview other students in the class. The tally sheet should be used to read the question and to tally the answers.

When the surveys are concluded, have each group create an appropriate graph to display the results of the survey.

†Sample topics for surveys:
- favorite sport or sports team
- favorite television show
- favorite school subject
- number of siblings in family
- how students get to school
- favorite season of the year
Division Answers
Ending with Zero

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:

Multiply two-digit numbers by numbers ending in zero:

a. 12×20

b. 12×30

c. 12×40

Review:

d. $36 + 29 + 230$

e. $\$4.87 + \3.98

f. $\$1.00 - 36\c

Problem Solving:

Sketch the next figure in this sequence:

NEW CONCEPT

Sometimes division answers end with a zero. It is important to continue the division until all the digits inside the division box have been used. Look at this problem:

Two hundred pennies are separated into 4 equal piles. How many pennies are in each pile?

This problem can be answered by dividing 200 by 4. First we divide 4 into 20. We put a 5 on top. Then we multiply and then we subtract.

\[
\begin{array}{c|c}
4 & 200 \\
\hline
5 & 20 \\
\hline
0 & 0
\end{array}
\]

The division might look complete, but it is not. The answer is not “five pennies in each pile.” That would total only 20 pennies. There is another zero inside the division box to
bring down. So we bring down the zero and divide again. Of course, 4 goes into zero 0 times, and 0×4 is zero.

<table>
<thead>
<tr>
<th>50</th>
<th>(4 \div 200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>50 \times 4</td>
</tr>
<tr>
<td>00</td>
<td>200</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We check our work by multiplying the quotient, 50, by the divisor, 4. The product should equal the dividend, 200. The answer checks. We find that there are 50 pennies in each pile.

Sometimes there will be a remainder with a division answer that ends in zero. We show this in the following example.

Example Divide: \(3 \overline{121} \)

Solution We begin by finding \(3 \overline{12} \). Since 3 goes into 12 four times, we write “4” above the 2. We multiply and subtract, getting 0, but we are not finished. We bring down the last digit of the dividend, which is 1. Now we find how many times 3 goes into 01 (which is the same as 3 going into 1). Since 3 goes into 1 zero times, we write “0” on top in the ones place. We then multiply zero by 3 and subtract. The remainder is 1.

<table>
<thead>
<tr>
<th>4 (\overline{3})</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

LESSON PRACTICE

Practice set Divide:

a. \(3 \overline{120} \)

b. \(4 \overline{240} \)

c. \(5 \overline{152} \)

d. \(4 \overline{121} \)

e. \(3 \overline{91} \)

f. \(2 \overline{41} \)
Problem set

1. Terrell stared at the rectangular ceiling and saw that it was covered with square tiles. The ceiling was 40 tiles long and 30 tiles wide. In all, how many tiles were on the ceiling?

2. There were two hundred sixty seats in the movie theater. All but forty-three seats were occupied. How many seats were occupied?

3. Each cookie contains 5 chocolate chips. How many chocolate chips are in 115 cookies?

4. A recipe for homemade ice cream calls for a cup of sugar for each quart of ice cream. How many cups of sugar are needed for a gallon of ice cream?

5. What is the value of 5 pennies, 3 dimes, 2 quarters, and 3 nickels?

6. One fourth of the students earned A’s. There were 280 students in all. How many students earned A’s? Draw a picture to help you solve the problem.

7. What percent of the students in problem 6 earned A’s?

8. What is \(\frac{1}{2} \) of 560? Draw a picture to help you solve the problem.

9. (a) The line segment shown below is how many centimeters long?

 (b) The segment is how many millimeters long?

 ![cm_mm_conversion](image)

10. The first four multiples of 9 are 9, 18, 27, and 36. What are the first four multiples of 90?
11. Compare: $\frac{2}{3} \bigcirc \frac{2}{5}$. Draw and shade two congruent rectangles to show the comparison.

12. Jenny could hop 72 times in 1 minute. At that rate, how many times could she hop in 9 minutes?

13. $375.48 \quad 14. 367,419 \quad 15. 42.3$

16. $20.00 \quad 17. 310,419 \quad 18. 96.4$

19. $86 \quad 20. 59\cent$

21. $3 \overline{180} \quad 22. 8 \overline{241} \quad 23. 5 \overline{323}$

24. $184 \div 6 \quad 25. 423 \div 7 \quad 26. \sqrt{36} + 4^2 + 10^2$

27. $9 + M = 27 + 72 \quad 28. 6N = 90$

29. Use an inch ruler to find the lengths of segments AB, BC, and AC.

30. If the diameter of a coin is 2 centimeters, then its radius is how many millimeters?
LESSON 72
Finding Information to Solve Problems

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:
Multiply two-digit numbers by numbers ending in zero:
 a. 21 × 20 b. 25 × 30 c. 25 × 20

Review:
 d. $10.00 – $2.98 e. 48 + 19 + 310 f. 490 – 125

Problem Solving:
John figures that about 50% of the calories he consumes are from carbohydrates. John consumes about 2000 calories each day. About how many of those calories are from carbohydrates?

NEW CONCEPT

Part of the problem-solving process is finding the information needed to solve a problem. Sometimes we need to find information in graphs, tables, books, or other places. In other cases, we might be given more information than we need to solve the problem. In this lesson we will practice choosing the information needed to solve a problem.

Example
Read this information. Then answer the questions that follow.

The school elections were held on Friday, February 2. Kim, Lily, and Miguel ran for president. Lily received 146 votes and Kim received 117 votes. Miguel received 35 more votes than Kim.

(a) How many votes did Miguel receive?

(b) Who received the most votes?

(c) Speeches were given on the Tuesday before the elections. What was the date on which the speeches were given?
Lesson 72

Solution (a) Miguel received 35 more votes than Kim, and Kim received 117 votes. So we add 35 to 117 and find that Miguel received 152 votes.

(b) Miguel received the most votes.

(c) The elections were on Friday, February 2. The Tuesday when the speeches were presented was 3 days before that. We count back 3 days: February 1, January 31, January 30. The speeches were given on Tuesday, January 30.

LESSON PRACTICE

Practice set Read this information. Then answer the questions that follow.

Tom did yard work on Saturday. He worked for 3 hours in the morning and 4 hours in the afternoon. He was paid $6 for every hour he worked.

a. How many hours did Tom work in all?

b. How much money did Tom earn in the morning?

c. How much money did Tom earn in all?

MIXED PRACTICE

Problem set 1. Christie’s car travels 18 miles on each gallon of gas. How many miles can it travel on 10 gallons of gas?

2. Alejandro mowed a yard that was 50 feet wide. Each time he pushed the mower along the length of the yard, he mowed a path 24 inches wide. To mow the entire yard, how many times did Alejandro need to push the mower along the length of the yard?

3. If Humpty Dumpty weighed 160 pounds and broke into 8 equal pieces, then how much did each piece weigh?

4. Soccer practice lasts for an hour and a half. If practice starts at 3:15 p.m., at what time does it end?

5. One third of the team’s 36 points were scored by Lucy. How many points did Lucy score? Draw a picture to help you solve the problem.
6. Find the perimeter and area of this rectangle:

(Inv. 2, Inv. 3)

7. This key is 60 mm long. The key is how many centimeters long?

8. According to this calendar, the year 1902 began on what day of the week?

9. The chance of rain is 30%. What is the chance that it will not rain?

10. A meter equals 100 centimeters. If each side of a square is 1 meter long, then what is the perimeter of the square in centimeters?

11. List the first four multiples of 90.

12. $1.68 + 32\text{c} + 6.37 + 5$

13. $4.3 + 2.4 + 0.8 + 6.7$

14. $10 - (6.46 + 2.17)$

15. $5 \times 4 \times 5$

16. 359×70

17. 50×74

18. $2\overline{161}$

19. $5\overline{400}$

20. $9\overline{462}$
21. \(\frac{216}{3} \) \hspace{1cm} 22. \(\frac{159}{4} \) \hspace{1cm} 23. \(\frac{490}{7} \)

24. \(\frac{126}{3} \) \hspace{1cm} 25. \(\frac{360}{\sqrt{36}} \) \hspace{1cm} 26. \(5N = 120 \)

Use this information to answer problems 27 and 28:

Selby scored two goals as her soccer team won 5 to 4 on November 3. To make the playoffs, her team needs to win two of the next three games.

27. How many goals were scored by Selby’s teammates?

28. Selby’s team has won four games and lost three games. Altogether, how many games does Selby’s team need to win to make the playoffs?

29. Angles \(C\) and \(D\) of this polygon are right angles. Which angle appears to be an obtuse angle?

30. Draw a polygon that is congruent to the polygon in problem 29.
LESSON
73
Geometric Transformations

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:
Multiply by 100:

a. 25 × 100
b. 100 × 40
c. 12 × 3 × 100

Review:

d. 567 − 230
e. $20.00 − $12.50
f. $6.49 + $2.99

Problem Solving:
The charge for the taxi ride was $2.50 for the first mile and $1.50 for each additional mile. What was the charge for an 8-mile taxi ride?

NEW CONCEPT

Geometry is a branch of mathematics that deals with such figures as lines, angles, polygons, circles, and solid objects. One concept from geometry that we have practiced is congruent figures. Recall that figures are congruent if they have the same shape and size. However, congruent figures may be in different orientations (positions). For example, all four of these triangles are congruent:

The right angle of ΔI ("triangle one") is at the lower left of the triangle. The other triangles may be reoriented to match ΔI.

To reorient ΔII, we may turn the triangle so that its right angle is at the lower left.
To reorient ΔIII, we may **flip** the triangle as we might flip a pancake or flip a page in a book. (Imagine flipping ΔIII so that its right angle is at the lower left.)

![Triangle flip diagram](image)

To reorient ΔIV, we may both turn and flip the triangle. (Imagine turning ΔIV so that it is oriented like ΔIII. After turning the triangle, flip the triangle to match ΔI.)

![Triangle turn and flip diagram](image)

To put each of triangles II, III, and IV in the same *location* as ΔI requires an additional step. Each reoriented triangle needs to **slide** to the location of ΔI.

![Triangle slide diagram](image)

Turns, flips, and slides are three ways of moving figures. In geometry we call these movements **transformations**, and we give them special names: a turn is a **rotation**, a flip is a **reflection**, and a slide is a **translation**.

Transformations

<table>
<thead>
<tr>
<th>Movement</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slide</td>
<td>Translation</td>
</tr>
<tr>
<td>Turn</td>
<td>Rotation</td>
</tr>
<tr>
<td>Flip</td>
<td>Reflection</td>
</tr>
</tbody>
</table>
Example Which transformations would move $\triangle II$ to the same orientation and location as $\triangle I$?

Solution We may move $\triangle II$ to the location of $\triangle I$ with two transformations: a turn and a slide. The order of the transformations does not matter. We may slide $\triangle II$ so that point B is on point A. Then we may turn $\triangle II$ around point B so that the sides and angles align with $\triangle I$. We call a slide a translation, and we call a turn a rotation.

LESSON PRACTICE

Practice set a. Congruent figures may be repositioned through transformations so that all corresponding sides and angles are aligned. Name the three transformations described in this lesson. Give the common name and the geometric name for each transformation.

b. Which transformations would position $\triangle ABC$ on $\triangle DEC$?

MIXED PRACTICE

Problem set Use this information to answer problems 1–3:

Thirty students are going on a field trip. Each car can hold five students. The field trip will cost each student $5.

1. How many cars are needed for the field trip?

2. Altogether, how much money will be needed?

3. Don has saved $3.25. How much more does he need to go on the field trip?
4. During the summer the swim team practiced $3 \frac{1}{2}$ hours a day. If practice started at 6:30 a.m., at what time did it end if there were no breaks?

5. Half of the 48 pencils were sharpened. How many were not sharpened? What percent of the pencils were not sharpened? Draw a picture to help you solve the problem.

6. What number is $\frac{1}{4}$ of 60? Draw a picture to help you solve the problem.

7. One gallon of water will be poured into 1-quart bottles. How many 1-quart bottles will be filled?

8. Each side of a regular polygon has the same length. A regular hexagon is shown below. How many millimeters is the perimeter of this hexagon?

9. A mile is five thousand, two hundred eighty feet. The Golden Gate Bridge is four thousand, two hundred feet long. The Golden Gate Bridge is how many feet less than 1 mile long?

10. Which of these numbers is not a multiple of 90?
 A. 45
 B. 180
 C. 270
 D. 360

11. What number is halfway between 300 and 400?

12. $37.56 - 4.2$

13. $4.2 + 3.5 + 0.25 + 4.0$

14. $100.00 - 31.53$

15. $251,546 - 37,156$

16. $N + 423$

 618
17. 3.46×7
18. 96×30
19. 0.59×8
20. $7 \overline{)633}$
21. $5 \overline{)98}$
22. $3 \overline{)150}$
23. $329 \div 6$
24. $274 \div 4$
25. $247 \div 8$
26. $\sqrt{25} \times M = 135$
27. $Z - 476 = 325$
28. $6A = 12 + 6$
29. Segment AB is 2.3 cm long. Segment BC is 3.5 cm long. How long is segment AC? Write a decimal addition problem and find the answer.
30. Which transformation would position $\triangle ABC$ on $\triangle ABD$?
Lesson 74

Fraction of a Set

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:

The sum of 38 and 17 is 55. If we make 38 larger by 2 and 17 smaller by 2, then the addition is 40 + 15. The sum is still 55, but the mental addition is easier. Before finding the following sums, make one number larger and the other smaller so that one of the numbers ends in zero:

a. 38 + 27
b. 48 + 24
c. 59 + 32
d. 57 + 26

Problem Solving:

In this subtraction problem some digits are missing. Copy this problem on your paper, and fill in the missing digits.

123

_ 4_
 _4

NEW CONCEPT

There are seven circles in the set below. Three of the circles are shaded. The fraction of the set that is shaded is \(\frac{3}{7}\).

3
7

Three circles are shaded. There are seven circles in all.

The number of members in the set is the denominator (bottom number) of the fraction. The number of members named is the numerator (top number) of the fraction.

Example 1 What fraction of the triangles is not shaded?

Solution The denominator of the fraction is 9, because there are 9 triangles in all. The numerator is 5, because 5 of the 9 triangles are not shaded. So the fraction of triangles that are not shaded is \(\frac{5}{9}\).
Example 2 In a class of 25 students, there are 12 girls and 13 boys. What fraction of the class is girls?

Solution Twelve of the 25 students in the class are girls. So the fraction of the class that is girls is \(\frac{12}{25} \).

LESSON PRACTICE

Practice set a. What fraction of the set is shaded?

 \[\begin{array}{cccc}
 \ & \ & \ & \ \\
 \ & \ & \ & \ \\
 \ & \ & \ & \ \\
 \ & \ & \ & \ \\
 \ & \ & \ & \ \\
 \ & \ & \ & \ \\
 \end{array} \]

b. What fraction of the set is not shaded?

 \[\begin{array}{cccccccc}
 \ & \ & \ & \ & \ & \ & \ \\
 \ & \ & \ & \ & \ & \ & \ \\
 \ & \ & \ & \ & \ & \ & \ \\
 \ & \ & \ & \ & \ & \ & \ \\
 \end{array} \]

c. In a class of 27 students, there are 14 girls and 13 boys. What fraction of the class is boys?

d. In the word ALABAMA, what fraction of the letters are A’s?

MIXED PRACTICE

Problem set 1. Michael caught sixty-two crawfish in the creek. Miguel caught seven crawfish, and Marcus and Michelle each caught twelve crawfish. Altogether, how many crawfish did these young people catch?

2. The Matterhorn is fourteen thousand, six hundred ninety-one feet high. Mont Blanc is fifteen thousand, seven hundred seventy-one feet high. How much taller is Mont Blanc than the Matterhorn?

3. There are 25 squares on a bingo card. How many squares are on 4 bingo cards?

4. Ninety-six books were placed on 4 shelves so that the same number of books were on each shelf. How many books were on each shelf?
5. One half of the 780 fans stood and cheered. How many fans stood and cheered? What percent of the fans stood and cheered?

6. How many years is ten centuries?

7. Estimate the sum of 493 and 387 by rounding both numbers to the nearest hundred before adding.

8. What fraction of this set is not shaded?

9. This 2-liter bottle contains how many milliliters of soda?

10. What is the perimeter of this rectangle?

11. If the rectangle in problem 10 were to be covered with squares with sides one inch long, how many squares would be needed?

12. Which transformation(s) would position $\triangle STR$ on $\triangle PQR$?

13. $6.15 - (\$0.57 + \$1.20)$

14. $43,160 - 8459$

15. $8 \times 8 \times 8$

16. $\$3.54 \times 6$

17. 80×57

18. 704×9
19. $\frac{9}{354}$
20. $\frac{7}{285}$
21. $\frac{5}{439}$

22. $515 \div 6$
23. $\frac{360}{4}$
24. $784 \div 8$

25. $\sqrt{36} + N = 6^2$
26. $462 - Y = 205$
27. $50 = 5R$

28. Find the next number in this counting sequence:
 ..., 90, 180, 270, ..., ...

29. Sierra’s arm is 20 inches long. If Sierra swings her arm in a circle, what will be the diameter of the circle?

30. Which of these numbers is a multiple of 8?
 A. 4
 B. 12
 C. 48
 D. 84
Measuring Turns

NEW CONCEPT

As Micah rides a skateboard, we can measure his movements. We might use feet or meters to measure the distance Micah travels. To measure Micah's turns, we may use degrees. Just as for temperature measurements, we use the symbol “°” to stand for degrees.

If Micah makes a full turn, then he has turned 360°. If Micah makes a half turn, he has turned 180°. A quarter turn is 90°.

Besides measuring the amount of turn, we can also describe the direction of a turn as clockwise or counterclockwise.

For instance, we tighten a screw by turning it clockwise, and we loosen a screw by turning it counterclockwise.
Example Mariya and Irina were both facing north. Mariya turned 90° clockwise and Irina turned 270° counterclockwise. After turning, in which directions were the girls facing?

Solution Below we show the turns Mariya and Irina made.

After turning 90° clockwise, Mariya was facing east. After turning 270° counterclockwise, Irina was also facing east. (Each quarter turn is 90°, so 270° is three quarters of a full turn.) So both girls were facing east after their turns.

LESSON PRACTICE

Practice set a. Describe the amount and the direction of a turn around point A that would position ΔII on ΔI.

b. Micah skated east, turned 180° clockwise, and then continued skating. In what direction was Micah skating after the turn?

MIXED PRACTICE

Problem set 1. Pears cost 59¢ per pound. How much would 4 pounds of pears cost?

2. Find the perimeter and area of this rectangle:

3. There were three hundred sixty books on the floor. Frankie put one fourth of the books on a table.
 (a) How many books did Frankie put on the table?
 (b) How many books were still on the floor?
4. What percent of the books in problem 3 were left on the floor?

5. To what mixed number is the arrow pointing?

6. Estimate the sum of 272 and 483. Begin by rounding each number to the nearest hundred.

7. What fraction of this set is shaded?

8. One quart of milk is how many ounces?

9. One quart is a quarter of a gallon. So one quart is what percent of a gallon?

Use the information in the bar graph below to answer problems 10 and 11.

10. Spinach was the favorite vegetable of how many students?

11. Altogether, how many students said broccoli or spinach was their favorite vegetable?

12. Describe the amount and the direction of a turn that would move this letter B to an upright position.
13. $86.47 + $47.98 = 134.45
14. 36.7 – 18.5 = 18.2
15. 2358 – 515 = 1843
16. \(\frac{716}{8} \)
17. \(\frac{161}{2} \)
18. \(\frac{434}{7} \)
19. 513 ÷ 6 = 85.5
20. \(\frac{270}{9} \)
21. \(\frac{267}{3} \)
22. \(N - 7.5 = 21.4 \)
23. $6.95 \times 8 = 55.6
24. 46 \times 70 = 3220
25. 460 \times 9 = 4140
26. 3A = 30 + 30
27. \(3^2 - 2^3 \)
28. 4 + 7 + 3 + 5 + 6 + 5 + 7 + 2 + N = 43
29. Which segment appears to be perpendicular to segment BC?

30. Draw a triangle similar to but not congruent to \(\triangle ABC \) in problem 29.
Lesson 76

Division with Three-Digit Answers • Dividing Money

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:
Before adding, make one number larger and the other number smaller:

a. 55 + 47

b. 24 + 48

c. 458 + 33

Review:

d. $6.25 + $1.95

e. 15 × 30

f. $1.00 − $0.38

Patterns:

Counting by fives from one we say this sequence:

1, 6, 11, 16, 21, 26, ...

What sequence do we say when we count by fives from four? Which two digits appear as final digits?

NEW CONCEPTS

Division with three-digit answers

We have practiced division problems that have two-digit answers. In this lesson we will practice division problems that have three-digit answers. Remember that the pencil-and-paper method we have used for dividing has four steps.

Step 1. Divide.

Step 2. Multiply.

Step 3. Subtract.

For each step we write a number. When we finish Step 4, we go back to Step 1 and repeat the steps until no digits remain to bring down.
Example 1 Divide: $3 \div 794$

Solution

Step 1: Divide $3 \overline{794}$ and write “2.”

Step 2: Multiply 2 by 3 and write “6.”

Step 3: Subtract 6 from 7 and write “1.”

Step 4: Bring down the 9 to make 19.

Repeat:

Step 1: Divide 19 by 3 and write “6.”

Step 2: Multiply 6 by 3 and write “18.”

Step 3: Subtract 18 from 19 and write “1.”

Step 4: Bring down the 4 to make 14.

Repeat:

Step 1: Divide 14 by 3 and write “4.”

Step 2: Multiply 4 by 3 and write “12.”

Step 3: Subtract 12 from 14 and write “2.”

Step 4: There are no digits to bring down. We are finished dividing. We write “2” as the remainder for a final answer of 264 R 2.

Dividing money

To divide dollars and cents by a whole number, we divide the digits just like we divide whole numbers. The decimal point in the answer is placed directly above the decimal point inside the division box. We write a dollar sign in front of the answer.

Example 2 Divide: $8.40 \div 3$

Solution

The decimal point in the quotient is directly above the decimal point in the dividend. We write a dollar sign in front of the quotient.

$3 \overline{8.40}$

2.80
LESSON PRACTICE

Practice set*

a. Copy the diagram at right. Then name the four steps of pencil-and-paper division.

Divide:

b. $4 \overline{)974}$
c. $\$7.95 \div 5$

d. $6 \overline{)1512}$
e. $8 \overline{)$50.00

MIXED PRACTICE

Problem set

1. Seven thousand, three hundred ninety-six is how much less than eleven thousand, eight hundred seventy-three?

2. Shannon has five days to read a 200-page book. If she wants to read the same number of pages each day, how many pages should she read each day?

3. Julie ordered a book for $6.99, a dictionary for $8.99, and a set of maps for $5.99. What was the price for all three items?

4. The prince searched 7 weeks for the princess. For how many days did he search?

5. One third of the books were placed on the first shelf. What fraction of the books were not placed on the first shelf?

6. On a number line, what number is halfway between 2000 and 3000?

7. In the word HIPPOPOTAMI, what fraction of the letters are P’s?

8. Mary ran a 5-kilometer race. Five kilometers is how many meters?

9. $12 + 13 + 5 + N = 9 \times 8$
10. What is the perimeter of this triangle?

11. The length of segment \(AB\) is 3.6 cm. The length of segment \(AC\) is 11.8 cm. What is the length of segment \(BC\)? Write a decimal subtraction problem and find the answer.

12. \(25 - (19.71 + 98\text{¢})\)

13. \(365 + 10^2 + 3^3\)

14. \(5.00 - 2.92\)

15. \(36.21 - 5.7\)

16. \(5 \times 6 \times 9\)

17. \(50 \times 63\)

18. \(478 \times 6\)

19. \(3 \overline{435}\)

20. \(7 \overline{867}\)

21. \(5 \overline{13.65}\)

22. \(453 \div 6\)

23. \(543 \div 4\)

24. \(\$4.72 \div 8\)

25. \(N + 6 = 120\)

26. \(4W = 132\)

27. \(4 + 8 + 7 + 6 + 4 + N + 3 + 6 + 5 = 55\)

28. Mieko was facing east. She heard “Simon says, ‘Turn 90° clockwise.’” If Mieko turned correctly, in which direction would she be facing?

29. If the diameter of a playground ball is one foot, then its radius is how many inches?

30. Which transformations would move \(\Delta ABC\) to position \(RST\)?
Lesson 77

U.S. Customary Units of Weight • Metric Units of Mass

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:

a. 77 + 14
b. 87 – 40
c. 35 × 100
d. $5.00 – $4.36
e. $4.38 + $2.99
f. 120 × 10

Problem Solving:

Segment AC is how much longer than segment AB?

NEW CONCEPTS

U.S. Customary units of weight

The units of weight in the U.S. Customary System are ounces, pounds, and tons. Remember that in Lesson 40 we used the word ounce to describe an amount of fluid. However, ounce can also describe an amount of weight. A fluid ounce of water weighs about one ounce.

As we see in the table below, one pound is 16 ounces, and one ton is 2000 pounds. Ounce is abbreviated oz. Pound is abbreviated lb.

$16 \text{ oz} = 1 \text{ lb}$

$2000 \text{ lb} = 1 \text{ ton}$

A box of cereal might weigh 24 ounces. Some students weigh 98 pounds. Many cars weigh 1 ton or more.
Example 1 This book weighs about 2 pounds. Two pounds is how many ounces?

Solution Each pound is 16 ounces. So 2 pounds is 2×16 ounces, which is 32 ounces.

Example 2 The rhinoceros weighed 3 tons. Three tons is how many pounds?

Solution Each ton is 2000 pounds. So 3 tons is 3×2000 pounds, which is 6000 pounds.

Metric units of mass Grams and kilograms are metric units of mass. Recall that the prefix kilo- means “thousand.” Thus, a kilogram is 1000 grams. Gram is abbreviated g. Kilogram is abbreviated kg.

$$1000 \text{ g} = 1 \text{ kg}$$

A dollar bill has a mass of about 1 gram. This book has a mass of about 1 kilogram. Since this book has fewer than 1000 pages, each page is more than 1 gram.

Example 3 Choose the more reasonable measure:

(a) pair of shoes (b) cat (c) quarter

1 g 1 kg 4g 4 kg 5 g 5 kg

Solution (a) 1 kg (b) 4 kg (c) 5 g

Example 4 Malika’s rabbit has a mass of 4 kilograms. Four kilograms is how many grams?

Solution Each kilogram is 1000 grams. So 4 kilograms is 4×1000 grams, which is 4000 grams.

LESSON PRACTICE

Practice set a. Dave’s pickup truck can haul a half ton of cargo. How many pounds is a half ton?

b. The newborn baby weighed 7 lb 12 oz. The baby’s weight was how much less than 8 pounds?

†There is a technical difference between weight and mass. An object’s weight depends on the force of gravity, but its mass does not. The force of gravity does not vary much on Earth, though, so we commonly use units of weight and mass interchangeably.
Choose the more reasonable measure in problems c–e:

c. tennis ball d. dog e. bowling ball
\[57 \text{ g} \quad 57 \text{ kg} \quad 6 \text{ g} \quad 6 \text{ kg} \quad 7 \text{ g} \quad 7 \text{ kg}\]

f. Seven kilograms is how many grams?

MIXED PRACTICE

Problem set Use the information in the pictograph below to answer problems 1–3.

![Consumed by Matt in One Day](image)

1. How many pints of liquid did Matt drink in 1 day?

2. Matt drank twice as much water as he did what other beverage?

3. Of which beverage did he drink exactly 1 quart?

4. There were 4 rooms. One fourth of the 56 guests gathered in each room. How many guests were in each room? What percent of the guests were in each room?

5. Which of these arrows could be pointing to 2500?

6. Estimate the sum of 682, 437, and 396 by rounding each number to the nearest hundred before adding.

7. What fraction of this set is shaded?

8. McGillicuddy weighed 9 pounds when he was born. How many ounces is that?
9. (a) The segment below is how many centimeters long?

(b) The segment is how many millimeters long?

<table>
<thead>
<tr>
<th>cm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>

10. The mansion sold for $7,450,000. Use words to write that amount of money.

11. If each side of a hexagon is 1 foot long, then how many inches is its perimeter?

12. 93,417

 + 8,915

 = 102,332

13. 42,718

 _ K

 = 26,054

14. 1307

 _ 638

 = 5219

15. $100.00

 – $86.32

 = $13.68

16. 405,158

 + 16

 = 405,174

17. 567 \times 8

 = 4536

18. 30 \times 84\text{c}

 = 2520\text{c}

19. $2.08 \times 4

 = $8.32

20. 4\overline{15.00}

 = 38.75

21. \frac{936}{6}

 = 156

22. 8\overline{4537}

 = 566.7125

23. 452 \div 5

 = 90.4

24. 378 \div 9

 = 42

25. 960 \div 7

 = 137.142857

26. \sqrt{16} \times N = 100

 _ 16

 _ N _ 100

27. 5B = 10^2

 _ 5B _ 100

28. To what number is the arrow pointing?

29. Mona turned a quarter turn clockwise, then a quarter turn clockwise, then a quarter turn clockwise. Altogether Mona turned how many degrees?

30. Find the perimeter and area of this rectangle:

 \[
 \begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 5 \text{ units} & 3 \text{ units} & & & \\
 \hline
 \end{array}
 \]
Lesson 78

Classifying Triangles

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:
Before adding, make one number larger and the other number smaller:

a. 48 + 37
b. 62 + 29
c. 135 + 47

Review:
d. 30 \times 40 \times 20
e. $20.00 - $12.50
f. $6.46 + $1.98

Problem Solving:
Robby is mailing an envelope that weighs 6 ounces. The postage rates are 37¢ for the first ounce and 23¢ for each additional ounce. If Robby pays the postal clerk $2.00 for postage, how much money should he get back?

NEW CONCEPT

One way to classify (describe) a triangle is by referring to its largest angle as either obtuse, right, or acute. An obtuse angle is larger than a right angle. An acute angle is smaller than a right angle.

Another way to classify a triangle is by comparing the lengths of its sides. If all three sides are equal in length, the triangle is equilateral. If at least two sides are equal in length, the triangle is isosceles. If all three sides have different lengths, the triangle is scalene.
Example Draw a triangle that is both a right triangle and an isosceles triangle.

Solution A right triangle contains one right angle. An isosceles triangle has two sides of equal length. We begin by drawing a right angle with equal-length sides.

Then we draw the third side of the triangle.

LESSON PRACTICE

Practice set a. Can a right triangle have two right angles? Why or why not?

b. What is the name for a triangle that has at least two sides equal in length?

c. If one side of an equilateral triangle is 4 inches long, then what is the perimeter of the triangle?

MIXED PRACTICE

Problem set 1. Jamaal bought apples at 5 cents per pound at the sale. He spent 95 cents. How many pounds of apples did Jamaal buy?

2. Laura placed 243 paint cans on the shelf. Ninety-five of the cans fell during the earthquake. How many paint cans stayed on the shelf?

3. Pamela listened to half of a 90-minute tape. How many minutes of the tape did she hear?

4. One fourth of the guests gathered in the living room. What fraction of the guests did not gather in the living room? What percent of the guests did not gather in the living room?
5. If one side of an equilateral triangle is 3 centimeters long, then what is its perimeter in
 (a) centimeters? (b) millimeters?

6. Which of these arrows could be pointing to 2750?

7. Half of a gallon is a half gallon. Half of a half gallon is a quart. Half of a quart is a pint. Half of a pint is a cup. A cup is what fraction of a quart?

8. Isabel weighed 3 kilograms when she was born. How many grams is that?

10. It is afternoon. What time was it 12 hours ago?

11. Compare: \(\frac{3}{4} \bigcirc \frac{4}{5} \). Draw and shade two congruent rectangles to show the comparison.

12. \(4.325 - 2.5 \) \hspace{1cm} 13. \(3.65 + 5.2 + 0.18 \)

14. \($50.00 - $42.60 \) \hspace{1cm} 15. \($17.54 + 49\,\text{c} + $15 \)

16. \(2\sqrt{567} \) \hspace{1cm} 17. \(6\sqrt{34.56} \) \hspace{1cm} 18. \(4\sqrt{978} \)

19. \(398 \times 6 \) \hspace{1cm} 20. \(47 \times 60 \) \hspace{1cm} 21. \(8 \times $6.25 \)

22. \(970 \div \sqrt{25} \) \hspace{1cm} 23. \(\frac{372}{3} \) \hspace{1cm} 24. \(491 \div 7 \)

25. \(8N = 120 \) \hspace{1cm} 26. \(F \times 3^2 = 108 \)
27. $7 + 8 + 5 + 4 + N + 2 + 7 + 3 = 54$

28. Find the perimeter and area of this rectangle:

![Rectangle diagram]

29. Name the transformation(s) that would move $\triangle ABC$ to position $WXYZ$.

![Triangle diagram]

30. The first four multiples of 18 are 18, 36, 54, 72. What are the first four multiples of 180?
In nature we often find balance in the appearance and structure of objects and living things. For example, we see a balance in the wing patterns of moths and butterflies. We call this kind of balance *reflective symmetry*, or just *symmetry*.

The dashes across this drawing of a moth indicate a *line of symmetry*. The portion of the figure on either side of the dashes is the *mirror image* of the other side. If we stood a mirror along the dashes, the reflection in the mirror would appear to complete the figure.

Some polygons and other figures have one or more lines of symmetry.

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:

Subtracting two-digit numbers mentally is easier if the second number ends in zero. By increasing both numbers in a subtraction by the same amount, we can sometimes make the subtraction easier while keeping the difference the same. For example,

\[
\begin{array}{ccc}
\text{instead of} & 45 & \text{we can think} & 47 \\
-28 & & -30 \\
\end{array}
\]

We added 2 to 28 so that the second number would end in zero. Then we added 2 to 45 to keep the difference the same. Use this strategy for the problems below.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>45</td>
<td>b.</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>-39</td>
<td>c.</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>-35</td>
<td>d.</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>-27</td>
<td></td>
<td>-48</td>
</tr>
</tbody>
</table>

Example 1 Which of these polygons does not have a line of symmetry?

A.
B.
C.

Solution The rectangle has two lines of symmetry.

![Rectangle with lines of symmetry][1]

The isosceles triangle has one line of symmetry.

![Isosceles Triangle with line of symmetry][2]

The third polygon has no line of symmetry. The answer is C.

About half of the uppercase letters of the alphabet have lines of symmetry.

Example 2 Copy these letters and draw each line of symmetry, if any.

![Letters C H A I R][3]

Solution The letters H and I each have two lines of symmetry. The letters C and A each have one line of symmetry. The letter R has no lines of symmetry.

![Letters C H A I R with lines of symmetry][4]

Activity: Lines of Symmetry

Materials needed:

- copies of Activity Master 12 (masters available in *Saxon Math 5/4 Assessments and Classroom Masters*)
- mirrors

In small groups (or as a class), use a mirror to find lines of symmetry in the figures on Activity Master 12.
LESSON PRACTICE

Practice set Copy each figure and draw the lines of symmetry, if any.

a.

b.

c.

d.

e.

f.

MIXED PRACTICE

Problem set Use this circle graph to answer problems 1–4:

1. What is the total number of hours shown in the graph?

2. What fraction of Dan’s day was spent watching TV?

3. If Dan’s school day starts at 8:30 a.m., at what time does it end?

4. Which two activities together take more than half of Dan’s day?
 - A. sleeping and playing
 - B. school and homework
 - C. school and sleeping
 - D. school and playing

5. One fifth of the 60 eggs were placed in each box. How many eggs were placed in each box?

 60 eggs
6. Which of these arrows could be pointing to 2250?

7. Estimate the sum of 427, 533, and 764 by rounding each number to the nearest hundred before adding.

8. What fraction of this set is not shaded?

9. Forty-two oranges could be shipped in one box. Luther had 30 boxes. How many oranges could he ship?

10. Only 5 apples will fit in one small box. If Hannah has 145 apples, how many boxes does she need to pack the apples?

11. What is the perimeter of this square?

12. If the square in problem 11 were to be covered with small squares one inch on each side, how many squares would be needed?

13. Draw the capital letter E rotated 90° clockwise.

14. $20.10 - $16.45

15. $98.54 + $9.85

16. 380 × 4

17. 97 × 80

18. 5)3840

19. $8.63 \times 7

20. 4.25 - 2.4

21. 8)$70.00

22. 6)3795

23. 4 \times P = 160

24. $\sqrt{64} \div \sqrt{16}$

25. $\frac{287}{7}$

26. 10 \times (6^2 + 2^3)
27. Find the perimeter of this rectangle
 (a) in centimeters.
 (b) in millimeters.

28. At right we show a vertical number
 line. To what number is the arrow
 pointing?

29. Micah spun completely around twice on a skateboard.
 How many degrees did Micah spin?

30. Which of these letters does not have a line of symmetry?

 T U V W
Division with Zeros in Three-Digit Answers

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:
Find each difference by first enlarging both numbers so that the second number ends in zero:

a. 63 – 28

b. 45 – 17

c. 80 – 46

Review:

d. 48 + 34

e. 24 × 100

f. $10.00 – $5.85

Patterns:
When we count by fives from five, the numbers end with 0 or 5. When we count by fives from one, the numbers end with 1 or 6. When we count by fives from two, from three, and from four, how do the numbers end?

NEW CONCEPT

Recall that the pencil-and-paper method we have used for dividing numbers has four steps.

Step 1. Divide.

Step 2. Multiply.

Step 3. Subtract.

Every time we bring a number down, we return to Step 1. Sometimes the answer to Step 1 is zero, and we will have a zero in the answer.

Example 1 Divide: $3 \overline{)618}$
Lesson 80

Solution

Step 1: Divide 3)6 and write “2.”

Step 2: Multiply 2 by 3 and write “6.”

Step 3: Subtract 6 from 6 and write “0.”

Step 4: Bring down the 1 to make 01 (which is 1).

REPEAT:

Step 1: Divide 3 into 01 and write “0.”

Step 2: Multiply 0 by 3 and write “0.”

Step 3: Subtract 0 from 1 and write “1.”

Step 4: Bring down the 8 to make 18.

REPEAT:

Step 1: Divide 3 into 18 and write “6.”

Step 2: Multiply 6 by 3 and write “18.”

Step 3: Subtract 18 from 18 and write “0.”

Step 4: There are no more digits to bring down, so the division is complete. The remainder is zero.

Example 2

Divide: 4)1483

Solution

Step 1: Divide 4)14 and write “3.”

Step 2: Multiply 3 by 4 and write “12.”

Step 3: Subtract 12 from 14 and write “2.”

Step 4: Bring down the 8 to make 28.

REPEAT:

Step 1: Divide 4 into 28 and write “7.”

Step 2: Multiply 7 by 4 and write “28.”

Step 3: Subtract 28 from 28 and write “0.”

Step 4: Bring down the 3 to make 03 (which is 3).

REPEAT:

Step 1: Divide 4 into 03 and write “0.”

Step 2: Multiply 0 by 4 and write “0.”

Step 3: Subtract 0 from 3 and write “3.”

Step 4: There are no digits to bring down, so the division is complete. We write “3” as the remainder.
Example 3 Divide: $6\overline{)2400}$

Solution Some division problems can be performed mentally. We see that $6\overline{)24}$ equals 4 with no remainder. So bringing down the two zeros of 2400 would result in two zeros in the quotient.

\[
\begin{array}{c|c}
 & 400 \\
6 & 2400 \\
\end{array}
\]

LESSON PRACTICE

Practice set*

a. List the four steps of division and draw the division diagram.

Divide:

b. $4\overline{)815}$

c. $5\overline{)4152}$

d. $6\overline{)5432}$

e. $7\overline{)845}$

Divide mentally:

f. $5\overline{)1500}$

g. $4\overline{)2000}$

MIXED PRACTICE

Problem set

1. If the chance of rain is 30%, then which is more likely—that it will rain or that it will not rain?

2. Monty ran the race 12 seconds faster than Ivan. Monty ran the race in 58 seconds. Ivan ran the race in how many seconds?

3. The whole rectangle is divided into 5 equal parts. Each part is what percent of the rectangle?
 (Hint: Divide 100 by 5.)

4. How many 6-inch-long sticks can be cut from a 72-inch-long stick of sugar cane?

5. One fifth of the leaves had fallen. What fraction of the leaves had not fallen?

6. Which of these arrows could be pointing to 5263?

![Diagram of arrows A, B, C with coordinates 5000 and 6000]
7. What fraction of the months of the year have 31 days?

8. The prefix *kilo-* means what number?

9. Estimate the sum of 393, 589, and 241 by rounding each number to the nearest hundred before adding.

10. This triangle is equilateral. How many millimeters is the perimeter of the triangle?

11. Three liters equals how many milliliters?

12. Wilma could run 5 miles in 1 hour. At that rate, how long would it take her to run 40 miles?

13. \[2N = 150\]

14. \[24.25 - (6.2 + 4.8)\]

15. \[103,279 + 97,814\]

16. \[$36.14 + $27.95\]

17. \[39,420 - 29,516\]

18. \[$60.50 - N\]

19. \[604 \times 9\]

20. \[87 \times 60\]

21. \[6.75 \times 4\]

22. \[3\overline{618}\]

23. \[5\overline{21.50}\]

24. \[N + 1467\]

25. \[\frac{600}{4}\]

26. \[543 \div 6\]

27. \[472 \div 8\]

28. \[9 \times W = 9^2 + (9 \times 2)\]

29. Divide mentally: \[5\overline{3000}\]

30. Draw a triangle that is congruent to this isosceles triangle. Then draw its line of symmetry.
Graphing Relationships

Tables and graphs can be used to display relationships between two quantities, such as pay and time worked.

Suppose Dina has a job that pays $10 per hour. This table shows the total pay Dina would receive for 1, 2, 3, or 4 hours of work.

1. Copy the table. Extend the table to show Dina’s pay for each hour up to 8 hours of work.

The graph below shows the same relationship between hours worked and total pay. Each dot on the graph represents both a number of hours and an amount of pay.

2. Copy the graph. Extend the sides of the graph to include 8 hours and $80. Then graph (draw) the dots for Dina’s total pay for each hour up to 8 hours.

Mrs. Smith writes the percent of correct answers on each test and quiz she grades. These tables show percent scores for 10-question quizzes and 20-question tests:
3. Copy the table for 20-question tests. Extend the table to show scores for each number of correct answers up to 20.

This graph shows the relationship between correct answers and percent scores for a 20-question test. Refer to the graph to answer the questions that follow.

<table>
<thead>
<tr>
<th>Number of Correct Answers</th>
<th>Score</th>
<th>Number of Correct Answers</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Questions</td>
<td></td>
<td>20 Questions</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10%</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>20%</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>30%</td>
<td>3</td>
<td>15%</td>
</tr>
<tr>
<td>4</td>
<td>40%</td>
<td>4</td>
<td>20%</td>
</tr>
<tr>
<td>5</td>
<td>50%</td>
<td>5</td>
<td>25%</td>
</tr>
<tr>
<td>6</td>
<td>60%</td>
<td>6</td>
<td>30%</td>
</tr>
<tr>
<td>7</td>
<td>70%</td>
<td>7</td>
<td>35%</td>
</tr>
<tr>
<td>8</td>
<td>80%</td>
<td>8</td>
<td>40%</td>
</tr>
<tr>
<td>9</td>
<td>90%</td>
<td>9</td>
<td>45%</td>
</tr>
<tr>
<td>10</td>
<td>100%</td>
<td>10</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>55%</td>
</tr>
</tbody>
</table>

4. Sonia answered 18 questions correctly. What was her percent score?

5. Litzl scored 75%. How many correct answers did Litzl have?
Sometimes we want to name points on a grid. Below we show how to name points using pairs of numbers called **coordinates**. The first number in each coordinate pair is taken from the horizontal scale. The second number in each pair is taken from the vertical scale. We write the coordinates in parentheses.

6. Write the coordinates of point **A**.

7. Write the coordinates of point **B**.

To draw this star, we connect points by using segments. We start at point **A**, draw a segment to point **B**, and then continue in order to points **C**, **D**, and **E** before going back to point **A**.

Activity: Graphing on a Coordinate Grid

Materials needed:

- Activity Master 13 (1 copy per student; masters available in *Saxon Math 5/4 Assessments and Classroom Masters*)

Have students practice graphing points on a grid and connecting the points to complete a design.
WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:
Before adding, make one number larger and the other number smaller:

a. 38 + 46
b. 67 + 24
c. 44 + 28

Review:
d. 30 \times 50 \times 10
e. $5.00 – $3.15

Problem Solving:
How long is segment AB? How long is segment BC? Segment AB is how much longer than segment BC?

\[\text{inch} \quad 1 \quad 2 \quad 3\]

NEW CONCEPT

In one hour the minute hand of a clock turns all the way around once. Recall from Lesson 75 that one full turn measures 360°.

As the minute hand moves, it forms changing angles with the hour hand. At 3 o’clock the angle formed is a right angle, which measures 90°. At 6 o’clock the angle formed is a straight angle, because the two sides of the angle form a straight line. A straight angle measures 180°.
Here we show some angles and their measures in degrees:

\[\text{45°} \quad \text{90°} \quad \text{135°} \quad \text{180°} \]

Notice that a 45° angle is half the size of a 90° angle. Also notice that a 135° angle is the size of a 90° angle plus a 45° angle. A 180° angle is twice the size of a 90° angle.

Activity: Angle Measurement Tool

Materials needed by each student:

- one 3-by-5-in. rectangle of unlined paper

Distribute 3-by-5-in. paper rectangles. As a class, follow the directions in Steps 1–4.

Step 1: Fold the paper in half, making sure the sides are aligned before creasing. Draw a square corner at the fold and write “90°” as shown. Use the edge of your pencil point to shade the sides of the angle.

Step 2: Fold the paper again so that the left side aligns with the bottom side before creasing. Write “45°” as shown. Shade the sides of the angle.

Step 3: Unfold the paper. Turn over the paper so that the 90° and 45° labels are on the back and the folds appear as shown. Write “180°” where the folds meet. Shade the sides of the angle across the bottom of the card.
Step 4: Fold up the right-hand corner of the paper, and write “135°” as shown. Shade the remaining side of the angle.

LESSON PRACTICE

Practice set Using the paper you folded in this lesson, estimate the measure of each angle in problems a–d. First find an angle on the paper that is a close match to the angle you are measuring. Then fit the corner and one side of the paper with the corner and one side of the angle. If the angle is larger or smaller than the paper angle, estimate how much larger or smaller. Add or subtract from your paper measurement to get a final estimate.

a.

b.

c.

d.

e. At 9 o’clock the hands of a clock form an angle of how many degrees?

MIXED PRACTICE

Problem set 1. Cecilia skated 27 times around the rink forward and 33 times around the rink backward. In all, how many times did she skate around the rink?

2. Nectarines cost 68¢ per pound. What is the price for 3 pounds of nectarines?

3. In bowling, the sum of Amber’s score and Beth’s score was equal to Consuela’s score. If Consuela’s score was 113 and Beth’s score was 55, what was Amber’s score?
4. One third of the 84 students were assigned to each room. How many students were assigned to each room?

5. Round 2250 to the nearest thousand.

6. In the word ARIZONA, what fraction of the letters are not A’s?

7. The African elephant weighed 7 tons. How many pounds is that?

8. The tip of this shoelace is how many millimeters long?

9. Choose the more reasonable measure:
 (a) box of cereal: 400 g or 400 kg
 (b) pail of water: 10 mL or 10 L

10. According to this calendar, what is the date of the last Tuesday in February 2019?

11. Forty-two thousand, seven hundred is how much greater than thirty-four thousand, nine hundred?

12. Find the perimeter and area of this rectangle:

13. Samantha was riding north. Then she turned 90° to the left. After turning, in what direction was Samantha riding?
14. \(6743 - (507 \times 6) \)
15. \(\$70.00 - \$63.17 \)
16. \(3 \times 7 \times 0 \)
17. \(\$8.15 \times 6 \)
18. \(67¢ \times 10 \)
19. \(4.5 + 0.52 + 1.39 \)
20. \(2 \sqrt{12.16} \)
21. \(6 \sqrt{4321} \)
22. \(8 \sqrt{4800} \)
23. \(963 \div \sqrt{9} \)
24. \(5^3 \div 5 \)
25. \(\$6.57 \div 9 \)
26. \(200 = 4 \times B \)
27. \(D \times 7 = 105 \)
28. \(\begin{array}{c} 473 \\ 286 \end{array} + N \)
29. \(\begin{array}{c} 1 \\ 12 \end{array} \)
30. \(\begin{array}{c} 2 \\ 33 \end{array} \)
\(\begin{array}{c} 943 \\ 14 \end{array} \)
\(\begin{array}{c} 5 \\ 25 \end{array} \)
\(\begin{array}{c} 6 \end{array} \)
\(\begin{array}{c} + 26 \\ + 27 \end{array} \)
Archaeologists have found that people used tiles to make mosaics and to decorate homes, temples, and other buildings as long ago as 4000 B.C. The Romans called these tiles *tesselae*, from which we get the word *tessellation*. A tessellation, also called a *tiling*, is the repeated use of shapes to fill a flat surface without gaps or overlaps. Below are examples of tessellations and the name of the shape that produced each one.

Starting with any tile, how might you move that tile to continue each tessellation above? That is, what transformations can be used to go from one tile to another?

- For the triangle tessellation, rotate a tile 180° and then translate it up, down, right, or left.
- For the hexagon tessellation, translate a tile until one of its sides aligns with the side of another hexagon.
- For the quadrilateral tessellation, translate a tile to continue the pattern. The translation can be up, down, left, right, or diagonal.
Not all polygons tessellate, that is, fill a flat surface. However, every triangle and every quadrilateral can fill a flat surface. Here we show examples using these two types of polygon:

![Triangle tessellation](image1)
![Quadrilateral tessellation](image2)

Activity: Tessellations

Materials needed:
- Activity Master 14 (1 copy per student; masters available in *Saxon Math 5/4 Assessments and Classroom Masters*)
- scissors

Cut out the triangles and quadrilaterals on Activity Master 14. Then use the figures to form two tessellations, one with the triangles and one with the quadrilaterals. You may want to color the figures before cutting them out and then put them together in a way that creates a colorful design.

LESSON PRACTICE

Practice set

a. Trace this figure on your paper a few times, turning your paper as you trace, to show that the figure will fill a flat surface.

![Tracing figure](image3)

b. Does this figure tessellate?

![Tessellating figure](image4)

MIXED PRACTICE

Problem set

1. There are 35 students in the class but only 28 math books. How many more math books are needed so that every student in the class has a math book?

2. Each of the 7 children slid down the water slide 11 times. How many times did they slide in all?

3. A bowling lane is 60 feet long. How many yards is 60 feet?
4. Willis carried the baton four hundred forty yards. Eric carried it eight hundred eighty yards. Joe carried it one thousand, three hundred twenty yards, and Braulio carried it one thousand, seven hundred sixty yards. In all, how many yards was the baton carried?

5. One third of the members voted no. What fraction of the members did not vote no?

6. Round 6821 and 4963 to the nearest thousand. Then add the rounded numbers.

7. What fraction of the days of the week start with the letter S?

8. Together, Bob’s shoes weigh about 1 kilogram. Each shoe weighs about how many grams?

Use the line graph below to answer problems 9–11.

9. About how many pounds did Juan weigh on his second birthday?

10. About how many pounds did Juan gain between his third and fifth birthdays?

11. Copy and complete this table using information from the line graph.

<table>
<thead>
<tr>
<th>Age</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>At birth</td>
<td>6 pounds</td>
</tr>
<tr>
<td>1 year</td>
<td>20 pounds</td>
</tr>
<tr>
<td>2 years</td>
<td>25 pounds</td>
</tr>
<tr>
<td>3 years</td>
<td>30 pounds</td>
</tr>
<tr>
<td>4 years</td>
<td>35 pounds</td>
</tr>
<tr>
<td>5 years</td>
<td>40 pounds</td>
</tr>
</tbody>
</table>
12. If 65% of the lights are on, then what percent of the lights are off?

13. $60.75 + $95.75 = $156.50
14. $16.00 - $15.43 = $0.57
15. 3.15 - 3.12 = 0.03

16. $6.00 ÷ 8 = $0.75
17. 625 ÷ 5 = 125
18. 425 ÷ 6 = 70.83

22. 3R = 150

23. $10^2 + T = 150

24. 1 + 7 + 2 + 6 + 9 + 4 + N = 37

25. If the 3-inch square is covered with 1-inch squares, how many of the 1-inch squares are needed?

26. What is the perimeter of this right triangle?

27. Which of these letters has a line of symmetry?

28. Write the capital letter P rotated 90° counterclockwise.

29. Three of these triangles are congruent. Which triangle is not one of the three congruent triangles?

30. The radius of this circle is 1.2 cm. What is the diameter of the circle?
LESSON 83
Sales Tax • Change Back

WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:
Counting by fives from 1, 2, 3, 4, or 5, we find five different final-digit patterns: 1 and 6; 2 and 7; 3 and 8; 4 and 9; and 5 and 0. When a number ending in 5 is added to or subtracted from another number, the final digit of that number and of the answer will fit one of the five patterns. Look for the final-digit patterns in these problems:

<table>
<thead>
<tr>
<th>a. 22</th>
<th>b. 22</th>
<th>c. 38</th>
<th>d. 38</th>
<th>e. 44</th>
<th>f. 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5</td>
<td>-5</td>
<td>+5</td>
<td>-5</td>
<td>+5</td>
<td>-5</td>
</tr>
</tbody>
</table>

NEW CONCEPTS

Sales tax Sales tax is an extra amount of money that sometimes must be paid when items are purchased. The amount of tax depends upon the amount purchased and the local sales-tax rate. In the United States sales-tax rates vary by city, by county, and by state.

Example 1 Yin bought six bolts priced at 89¢ each. The total sales tax was 32¢. How much did Yin spend in all?

Solution First we find the cost of the six bolts by multiplying.

\[
\begin{align*}
5 \times 89\text{¢} &= 534\text{¢} \\
&= 5.34 \\
\end{align*}
\]

The six bolts cost $5.34. Now we add the sales tax.

\[
\begin{align*}
5.34 \text{ cost of bolts} \\
+ 0.32 \text{ sales tax} \\
\hline
5.66 \text{ total cost}
\end{align*}
\]

The total cost, including tax, was $5.66.

Example 2 Pam bought a blouse priced at $25. The sales-tax rate was 8¢ per dollar. How much tax did Pam pay?
Solution The tax was 8¢ for each dollar of the purchase price. So the tax on $1 was 8¢, the tax on $2 was 16¢, the tax on $3 was 24¢, and so on. To find the tax on $25, we multiply 25 by 8¢.

$$25 \times 8\text{¢} = 200\text{¢}$$

Since 200¢ is two dollars, Pam paid a tax of $2.00 on the blouse.

Change back If we do not have the exact amount of money needed to buy something at a store, we pay more than the total cost and then we get change back. To find how much change we should get back, we subtract the total cost from the amount we paid.

Example 3 Midge bought a pair of pants priced at $23.99. The sales tax was $1.56. Midge paid the clerk $40.00. How much money should she get back in change?

Solution First we figure out the total cost.

\[
\begin{align*}
\text{price of pants} & \quad 23.99 \\
+ \text{sales tax} & \quad 1.56 \\
\text{total cost} & \quad 25.55
\end{align*}
\]

Now we subtract the total cost from the amount she paid.

\[
\begin{align*}
\text{amount paid} & \quad 40.00 \\
- \text{total cost} & \quad 25.55 \\
\text{change back} & \quad 14.45
\end{align*}
\]

Midge should get $14.45 back from the clerk.

LESSON PRACTICE

Practice set a. Sarah bought three pairs of socks. Each pair was priced at $2.24. The total sales tax was 34¢. Altogether, how much did Sarah spend on socks?

b. Hakim paid $10.00 for a tape that cost $6.95. The sales tax was 49¢. How much money should Hakim get back in change?

MIXED PRACTICE

Problem set 1. Blackbeard brought home 30 bags. Each bag contained 320 gold coins. How many coins were there in all?

2. The movie was 3 hours long. If it started at 11:10 a.m., at what time did it end?

3. Jeremy is reading a 212-page book. If he has finished page 135, how many pages does he still have to read?
4. Brad, Jan, and Jordan each scored one third of the team’s 42 points. They each scored how many points?

5. Round 4286 to the nearest thousand.

6. The shirt was priced at $16.98. The tax was $1.02. Sam paid the clerk $20. How much money should Sam get back?

7. What fraction of the letters in the following word are I’s?

SUPERCALIFRAGILISTICEXPIALIDOCIOUS

Use the information below to answer problems 8–10:

In the first 8 games of this season, the Rio Hondo football team won 6 games and lost 2 games. They won their next game by a score of 24 to 20. The team will play 12 games in all.

8. In the first nine games of the season, how many games did Rio Hondo win?

9. Rio Hondo won its ninth game by how many points?

10. What is the greatest number of games Rio Hondo could win this season?

11. Compare: $3 \times 4 \times 5 \bigcirc 5 \times 4 \times 3$

12. $M - 137 = 257$

13. $N + 137 = 257$

14. $1.45 + 2.4 + 0.56 + 7.6$

15. $5.75 - (3.12 + 0.5)$

16. $638 \div 50$

17. $472 \div 9$

18. $\$6.09 \div 6$

19. $3\overline{921}$

20. $5\overline{678}$

21. $4\overline{2400}$
22. \(\frac{12.60}{5} \)
23. \(\frac{14.34}{6} \)
24. \(\frac{46.00}{8} \)

25. \(9^2 = 9 \times N \)
26. \(5 \times W = 5 \times 10^2 \)

27. The names of one fourth of the months begin with the letter J. What percent of the months begin with the letter J?

28. What is the perimeter of this rectangle in millimeters?

29. Draw a rectangle that is similar to the rectangle in problem 28 and whose sides are twice as long. What is the perimeter in centimeters of the rectangle you drew?

30. Kurt spun around three times and then fell down dizzy. How many degrees did Kurt turn?
LESSON 84

Decimal Numbers to Thousandths

WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:
Use the 5’s patterns as you add:

a. 36 + 15
b. 47 + 25
c. 28 + 35

Review:

d. 40 × 40 × 10
e. $10.00 − $2.75
f. 72 − 39

Problem Solving:
Estimate the percent of this circle that is darkly shaded.

NEW CONCEPT

In Investigation 4 we practiced writing fractions with a denominator of 10 as decimal numbers with one decimal place.

\[
\frac{7}{10} = 0.7 \quad \text{Both numbers are seven tenths.}
\]

We also wrote fractions with a denominator of 100 as decimal numbers with two decimal places.

\[
\frac{12}{100} = 0.12 \quad \text{Both numbers are twelve hundredths.}
\]

In this lesson we will write fractions with a denominator of 1000 as decimal numbers with three decimal places.

\[
\frac{125}{1000} = 0.125 \quad \text{Both numbers are one hundred twenty-five thousandths.}
\]

\[
\frac{25}{1000} = 0.025 \quad \text{Both numbers are twenty-five thousandths.}
\]

Example 1 Write \(\frac{375}{1000}\) as a decimal number. Then use words to name both numbers.
Solution The denominator of the fraction is 1000, so we use three decimal places to write the fraction as a decimal number.

\[
\frac{375}{1000} = 0.375 \quad \text{three hundred seventy-five thousandths}
\]

Going the other way, we see that a decimal number with three decimal places may be written as a fraction with a denominator of 1000.

Example 2 Write each decimal number as a fraction or mixed number. Then use words to name the numbers.

(a) 0.625
(b) 3.125

Solution (a) Since there are three places that follow the decimal point, we will use the denominator 1000 for our fraction. We write the digits that follow the decimal point as the numerator of the fraction.

\[
0.625 = \frac{625}{1000} \quad \text{six hundred twenty-five thousandths}
\]

(b) Since there is a whole number, 3, we may write this decimal number as a mixed number. Only the digits that follow the decimal point become part of the fraction.

\[
3.125 = 3\frac{125}{1000} \quad \text{three and one hundred twenty-five thousandths}
\]

LESSON PRACTICE

Practice set Write each fraction or mixed number as a decimal number:

a. \(\frac{425}{1000}\)
b. \(3\frac{875}{1000}\)

c. \(\frac{35}{1000}\)
d. \(2\frac{7}{1000}\)

Write each decimal number as a fraction or mixed number. Then use words to name the numbers.

e. 0.214
f. 4.321

g. 0.025
h. 5.012

i. 0.003
j. 9.999
Problem set

1. If it is not a leap year, what is the total number of days in January, February, and March?

2. The shoemaker’s wife made each of the 12 children a pair of pants and 2 shirts. How many pieces of clothing did she make?

3. John did seven more chin-ups than Paloma did. If John did eighteen chin-ups, how many chin-ups did Paloma do?

4. Kadeeja drove 200 miles on 8 gallons of gas. Her car averaged how many miles on each gallon of gas?

5. Melinda paid the clerk $20.00 for a book that was priced at $8.95. The tax was 54¢. How much money should she get back?

6. The tally for 8 is IIII. What is the tally for 9?

7. If each side of an octagon is 1 centimeter long, what is the octagon’s perimeter in millimeters?

8. One third of the 18 marbles were cat’s-eyes. How many of the marbles were cat’s-eyes? Draw a picture to help you solve the problem.

9. Robert picked 46 peaches in 1 day. At that rate, how many peaches could he pick in 6 days?

10. Mary picked 3640 peaches in 7 days. She picked an average of how many peaches each day?

11. In a feat of strength, Jack did 1000 push-ups, 129 of them with one arm. What fraction of the 1000 push-ups did Jack do with one arm?

12. Write the answer to problem 11 as a decimal number. Then use words to name the number.

13. $4.56 - (2.3 + 1.75)$

14. $\sqrt{36} + N = 7 \times 8$

15. $3 \times 6 \times 3^2$

16. $462 \times \sqrt{9}$

17. $7^2 - \sqrt{49}$
18. \[36 \times 50 \]
\[\frac{524}{4} \]
\[\frac{4200}{6} \]
\[\frac{26.30}{5} \]
\[\frac{3.70}{2} \]
\[\frac{786}{3} \]
\[\frac{4902}{7} \]

21. Write 0.321 as a fraction.

22. Find the perimeter and area of this square.

23. Which transformations would move figure \(ABCD \) to position \(WXYZ? \)

24. Which angle in this figure looks like it measures about 45°?
LESSON

85

Multiplying by 10, by 100, and by 1000

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:
Use the 5’s patterns as you subtract:

a. 41 – 15
b. 72 – 25
c. 84 – 45

Review:

d. 25 × 30
e. $6.54 + $2.99
f. 56 – 28

Patterns:

Find the next two numbers in each sequence:

1, 4, 9, 16, ___, ___,
1, 3, 6, 10, 15, 21, ___, ___,

NEW CONCEPT

To multiply a whole number by 10, we just attach a zero to the end of the number.

\[
\begin{align*}
123 & \times 10 \\
& = 1230
\end{align*}
\]

When we multiply a whole number by 100, we add two zeros to the end of the number.

\[
\begin{align*}
123 & \times 100 \\
& = 12,300
\end{align*}
\]

When we multiply a whole number by 1000, we add three zeros to the end of the number.

\[
\begin{align*}
123 & \times 1000 \\
& = 123,000
\end{align*}
\]
When we multiply dollars and cents, we remember to insert the decimal point two places from the right-hand side of the product.

\[
\begin{array}{c}
$1.23 \\
\times 100 \\
\hline
$123.00
\end{array}
\]

Example

Multiply mentally:

(a) \(37 \times 10\)
(b) \(6.12 \times 100\)
(c) \(45\text{¢} \times 1000\)

Solution

(a) The answer is “37” with one zero at the end:

\[370\]

(b) The answer is “612” with two zeros at the end. We remember to place the decimal point and dollar sign:

\[$612.00\]

(c) The answer is “45” with three zeros at the end. This makes \(45,000\text{¢}\), which in dollar form is

\[$450.00\]

LESSON PRACTICE

Practice set

Multiply mentally:

a. \(365 \times 10\)
b. \(52 \times 100\)
c. \(7 \times 1000\)
d. \($3.60 \times 10\)
e. \(420 \times 100\)
f. \($2.50 \times 1000\)

MIXED PRACTICE

Problem set

Use the information in the graph below to answer problems 1–3.

![Books Read by Students](image)

1. Which student has read exactly twice as many books as Jay?

2. Hiroshi’s goal is to read 10 books. How many more books does he need to read to reach his goal?

3. If the books Annie has read have an average of 160 pages each, how many pages has she read?
4. Jim saw some pentagons. The pentagons had a total of 100 sides. How many pentagons did Jim see?

5. Sophia bought a rectangular piece of land that was 3 miles long and 2 miles wide. Fifty percent of the land could be farmed. How many square miles could be farmed?

6. Max bought 10 pencils for 24¢ each. The tax was 14¢. What was the total cost of the pencils?

7. A full pitcher of orange juice contains about how much juice?
 A. 2 ounces B. 2 liters C. 2 gallons

8. Draw a triangle so that two sides are perpendicular. What type of triangle did you draw?

9. One fourth of the 48 gems were rubies. How many of the gems were rubies? Draw a picture to help you solve the problem.

10. What percent of the gems in problem 9 were not rubies?

11. One thousand fans attended the game, but only 81 fans were pleased with the outcome. What fraction of the fans who attended the game were pleased with the outcome?

12. Write the answer to problem 11 as a decimal number. Then use words to name the number.

13. 46.01 − (3.68 + 10.2)

14. 728 + $C = 1205$

15. 36 × 10
16. 100 × 42
17. 2.75×1000

18. 3.17×4
19. 206×5
20. 37×40

21. $3 \overline{492}$
22. $5 \overline{860}$
23. $6 \overline{9.30}$
24. $168 \div 2^3$

25. $20.00 \div 8$

26. $1600 \div \sqrt{16}$

27. Find the perimeter and area of this rectangle.

28. Which of these letters has two lines of symmetry?

29. Which angle in this figure looks like it measures about 135°?

30. Blanca wants to cover a floor with tiles. Which of these shapes of tile will not completely cover the floor (will not tessellate)?

A. \[\triangle \] B. \[\square \] C. \[\pentagon \] D. \[\hexagon \]
LESSON 86

Multiplying Round Numbers Mentally

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:
Use the 5’s patterns as you add or subtract:

a. $83 - 15$

b. $29 + 35$

c. $76 + 15$

Review:

d. 100×30

e. $5.00 - 4.38$

f. $67 + 26$

Problem Solving:

How long is segment AB? How long is segment BC? Segment BC is how much longer than segment AB?

NEW CONCEPT

Once we have memorized the multiplication facts, we can multiply round numbers “in our head.” To do this, we multiply the first digits of the factors and count zeros. Study the multiplication below:

$$
\begin{array}{c}
40 \\
\times 30
\end{array}$$

two zeros

$$
\begin{array}{c}
1200
\end{array}
$$

two zeros

$$
\begin{array}{c}
4 \times 3
\end{array}$$

To find the product of 40 and 30, we multiply 4 by 3 and then attach two zeros.

Example 1

Multiply mentally: 60×80

Solution

We think, “six times eight is 48.” Since there is one zero in 60 and one zero in 80, we attach two zeros to 48. The product is 4800.
Example 2 Multiply mentally: 30 × $7.00

Solution We think, “three times seven is 21.” There are three zeros in the problem, so we attach three zeros to 21 to get 21,000. Since we multiplied dollars and cents, we insert the decimal point two places from the right and add a dollar sign. The product is $210.00.

Example 3 Multiply mentally: 400 × 700

Solution We think, “Four times seven is 28.” We attach four zeros to get 280,000.

LESSON PRACTICE

Practice set Multiply mentally:
 a. 70 × 80
 b. 40 × 50
 c. 40 × $6.00
 d. 30 × 800

MIXED PRACTICE

Problem set

1. It takes Jennifer 20 minutes to walk to school. At what time should she start for school if she wants to arrive at 8:10 a.m.?

2. Before her haircut Rapunzel weighed 125 pounds. After her haircut she weighed 118 pounds. What was the weight of the hair that was cut?

3. Lucy bought a hamburger for $2.89, fries for $0.89, and a drink for 79¢. The tax was 28¢. She paid with a $5 bill. How much money should Lucy get back?

4. According to this calendar, October 30, 1904, was what day of the week?
5. The tally for 16 is $\underline{\text{JHT JHT JHT JHT}}$. What is the tally for 17?

6. Round three thousand, seven hundred eighty-two to the nearest thousand.

7. The limousine weighed 2 tons. How many pounds is 2 tons?

8. One fifth of the 45 horses were pintos. How many of the horses were pintos? Draw a picture to illustrate the problem.

9. What percent of the horses in problem 8 were pintos? (Hint: Find $\frac{1}{5}$ of 100%.)

10. Which point on the number line below could represent 23,650?

11. Write each decimal number as a fraction:
 (a) 0.1
 (b) 0.01
 (c) 0.001

12. $36.47 + 9.68 - 13.45$
 (43, 51) (52) (17)

13. $30.00 - 17$
 (58)

14. 6
 (58)

15. 476×7
 (58)

16. 804×5
 (58)

17. $12.65 - (7.43 - 2.1)$
 (45, 50)

18. $5^2 + 5^2 + N = 10^2$
 (61, 62)

19. Write each of these numbers with words:
 (a) $2 \frac{1}{10}$
 (b) 2.1

20. $100 \times 23\$$
 (85)

21. 60×30
 (86)

22. 70×2.00
 (86)

23. $3\overline{6.27}$
 (76, 80)

24. $7\overline{820}$
 (76)

25. $6\overline{333}$
 (68)
26. \(\frac{625}{\sqrt{25}} \)
27. \(\frac{4000}{2^3} \)
28. \(\frac{1370}{2} \)

29. Find the perimeter and area of this square.

30. Some combinations of shapes will fit together to cover a flat surface. What two types of polygons are used in the pattern below?
LESSON 87
Multiplying Two Two-Digit Numbers, Part 1

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:

a. $10.00 −$7.50

b. $400 × 20
c. 58 + 35
d. 250 × 10
e. $7.68 + $1.95
f. 85 − 38

Problem Solving:

Sandra bought a CD priced at $12.95. Sales tax was $1.10. She paid for her purchase with a $10 bill and a $5 bill. Sandra got back five coins (not including a half-dollar). What were the coins Sandra should have received in change?

NEW CONCEPT

We use three steps to multiply by a two-digit number. First we multiply by the ones digit. Next we multiply by the tens digit. Then we add the products. To multiply 34 by 12, for example, we multiply 34 by 2 and then multiply 34 by 10. Then we add the products.

\[
\begin{align*}
34 \times 2 &= 68 & \text{partial product} \\
34 \times 10 &= 340 & \text{partial product} \\
34 \times 12 &= 408 & \text{total product}
\end{align*}
\]

It is easier to write the numbers one above the other when we multiply, like this:

\[
\begin{array}{c}
34 \\
\times 12
\end{array}
\]

First we multiply 34 by 2 and write the answer.

\[
\begin{array}{c}
34 \\
\times 12 \\
68
\end{array}
\]
Next we multiply 34 by 1. This 1 is actually 10, so the product is 340. We write the answer; then we add the results of the two multiplications and get 408.

\[
34 \\
\times 12 \\
\underline{68} \\
340 \\
\underline{408}
\]

An alternate method often used is to omit the zero from the second multiplication. Using this method, we position the last digit of the second multiplication in the second column from the right. The empty place is treated like a zero when adding.

\[
34 \\
\times 12 \\
\underline{68} \\
34 \\
\underline{408}
\]

Example Multiply: 31
\[
\times 23
\]

Solution First we multiply 31 by 3.

\[
31 \\
\times 23 \\
\underline{93}
\]

Now we multiply 31 by 2. Since this 2 is actually 20, we write the last digit of the product in the tens column. Then we add to get 713.

\[
31 \\
\times 23 \text{ or } 23 \\
\underline{93} \text{ or } \underline{93} \\
62 \text{ or } 620 \\
\underline{713} \text{ or } \underline{713}
\]

LESSON PRACTICE

Practice set Multiply:

<table>
<thead>
<tr>
<th></th>
<th>a. 32</th>
<th>b. 23</th>
<th>c. 43</th>
<th>d. 34</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>× 23</td>
<td>× 32</td>
<td>× 12</td>
<td>× 21</td>
</tr>
<tr>
<td>e.</td>
<td>32</td>
<td>22</td>
<td>13</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>× 32</td>
<td>× 14</td>
<td>× 32</td>
<td>× 33</td>
</tr>
</tbody>
</table>
Problem set Use this information to answer problems 1–3:

Freeman rode his bike 2 miles from his house to Didi’s house. Together they rode 4 miles to the lake. Didi caught 8 fish. At 3:30 p.m. they rode back to Didi’s house. Then Freeman rode home.

1. Altogether, how far did Freeman ride his bike?

2. It took Freeman an hour and a half to get home from the lake. At what time did he get home?

3. Didi caught twice as many fish as Freeman. How many fish did Freeman catch?

4. Shep bought some feed priced at $12.97. Tax was 91¢. He paid with a $20 bill. How much money should he get back?

5. Estimate the sum of 4876 and 3149 by rounding each number to the nearest thousand before adding.

6. This is the tally for what number?

7. What is the perimeter of a pentagon if each side is 20 centimeters long?

8. Find the length of this segment to the nearest quarter inch:

9. One half of the 18 players were on the field. How many players were on the field? Draw a picture to illustrate the problem.

10. A dime is \(\frac{1}{10}\) of a dollar. What fraction of a dollar is a penny?

11. A dime is what percent of a dollar?

12. Two hundred eighty-three miles of the thousand-mile trip were through the desert. What fraction of the trip was through the desert?
13. Write the answer to problem 12 as a decimal number. Then use words to write the number.

14. \(\times \) 31
15. \(\times \) 32
16. \(\times \) 32

17. \(\times \) 11
18. \(\times \) 14
19. \(\times \) 800

20. \(\overline{\text{1000}} \)
21. \(\overline{\text{477}} \)
22. \(\overline{\text{2535}} \)

23. \(\div \) 9
24. \(\div \) 4
25. \(\div \) 8

26. Find the perimeter and area of this rectangle.

27. Draw an equilateral triangle with sides 2 cm long.

28. What is the perimeter in millimeters of the triangle you drew in problem 27?

29. In this polygon, which side appears to be parallel to side \(AB \)?

30. Which angle in the quadrilateral in problem 29 looks as if it might measure 110°?
We have practiced “equal groups” problems that we solved by division. In these problems there were no remainders from the division. In this lesson we will begin practicing division word problems that involve remainders. When solving these problems, we must be careful to identify exactly what the question is asking.

Example

The packer needs to place 100 bottles into boxes that hold 6 bottles each.

(a) How many boxes can be filled?

(b) How many bottles will be left over?

(c) How many boxes are needed to hold all the bottles?

Solution

Each of these questions asks for different information. To answer the questions, we begin by dividing 100 by 6.

\[
\[
\begin{array}{c}
16 \text{ R } 4 \\
6)100 \\
\hline
6 \\
40 \\
\hline
36 \\
4 \\
\end{array}
\]

The result “16 R 4” means that the 100 bottles can be separated into 16 groups of 6 bottles. There will be 4 extra bottles.
(a) The bottles can be separated into 16 groups of 6 bottles, so 16 boxes can be filled.

(b) The 4 remaining bottles do not completely fill a box. So after filling 16 boxes, there will still be 4 bottles left over.

(c) Although the 4 remaining bottles do not completely fill a box, another box is needed to hold them. Thus, 17 boxes are needed to hold all the bottles.

LESSON PRACTICE

Practice set Use the statements below to answer problems a–e.

Tomorrow 32 students are going on a field trip. Each car can carry 5 students.

a. How many cars can be filled?

b. How many cars will be needed?

Rafik found 31 quarters in his bank. He made stacks of 4 quarters each.

c. How many stacks of 4 quarters did he make?

d. How many extra quarters did he have?

e. If Rafik made a “short stack” with the extra quarters, how many stacks would he have in all?

MIXED PRACTICE

Problem set

1. Peter packed 6 table-tennis balls in each package. There were 100 table-tennis balls to pack.
 (a) How many packages could he fill?
 (b) How many table-tennis balls were left over?

2. One hundred twenty-three is how much less than three hundred twenty-one?

3. Brooke bought four giant pretzels priced at 59¢ each. The sales tax was 16¢. What was the total cost of the pretzels?

4. Twenty-four inches is how many feet?
5. (a) Segment YZ is how many millimeters long?

 (b) Segment YZ is how many centimeters long?

 ![Segment Diagram]

6. It is morning. What time will it be 5 hours 20 minutes from now?

7. Write the number 7528 in expanded form. Then use words to write the number.

8. One fifth of the 25 band members missed the note. How many band members missed the note? Draw a picture to illustrate the problem.

9. What percent of the band members in problem 8 missed the note?

10. $6.35 + $14.25 + $0.97 + $5

11. $4.60 - (1.4 + 2.75)$

12. $10.00 - (46¢ + $1.30)$

13. 28×1000

14. $\frac{13}{13}$

15. $\frac{12}{11}$

16. $\frac{8.67}{9}$

17. $\frac{31}{31}$

18. $\frac{12}{31}$

19. $7 \div 3542$

20. $6 \div 33.00$

21. $8 \div 4965$

22. $482 \div 5$

23. $2700 \div 9$

24. $2700 \div \sqrt{9}$

25. $7 + 7 + N = 7^2$

26. $3 \times N = 6^2$
27. Draw an obtuse triangle.

28. The classroom was 40 feet long and 30 feet wide. How many 1-foot square floor tiles were needed to cover the floor?

29. In this polygon, which side appears to be parallel to side AD?

30. According to this line graph, Sean’s score improved by how many answers from Test 1 to Test 2?
LESSON 89

Mixed Numbers and Improper Fractions

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:
Find half of each number:

a. 10 b. 40 c. 48 d. 64 e. 86

Review:

f. $3.54 + $2.99 g. 75 + 37 h. 86 – 38

Patterns:

Fifteen dots can be arranged in a triangle pattern. Sixteen dots can be arranged in a square pattern. Thirty-six dots can be arranged in either a triangle pattern or a square pattern. Make a triangle and a square pattern using 36 dots for each.

NEW CONCEPT

Here we show a picture of $1\frac{1}{2}$ shaded circles. Each whole circle has been divided into two half circles.

\[
1\frac{1}{2} = \frac{2}{2} + \frac{1}{2} = \frac{3}{2}
\]

We see from the picture that $1\frac{1}{2}$ is the same as three halves, which is written $\frac{3}{2}$. The numerator is greater than the denominator, so the fraction $\frac{3}{2}$ is greater than 1. Fractions that are greater than or equal to 1 are called improper fractions. In this lesson we will draw pictures to show mixed numbers and their equivalent improper fractions.
Example Draw circles to show that $2\frac{3}{4}$ equals $\frac{11}{4}$.

Solution We begin by drawing three circles. The denominator of the fraction part of $2\frac{3}{4}$ is four, so we divide all the circles into fourths and shade $2\frac{3}{4}$ of them.

We count 11 shaded fourths. The drawing shows that $2\frac{3}{4}$ equals $\frac{11}{4}$.

LESSON PRACTICE

Practice set

a. Draw circles to show that $1\frac{3}{4} = \frac{7}{4}$.

b. Draw circles to show that $2\frac{1}{2} = \frac{5}{2}$.

c. Draw circles to show that $1\frac{1}{3} = \frac{4}{3}$.

MIXED PRACTICE

Problem set

1. The coach divided 33 players as equally as possible into 4 teams.
 (a) How many teams had exactly 8 players?
 (b) How many teams had 9 players?

2. On the package there were two 37-cent stamps, two 20-cent stamps, and one 15-cent stamp. Altogether, how much did the stamps that were on the package cost?

3. Danielle read 20 pages each day. How many pages did she read in 2 weeks?

4. The Frog Prince leapt 27 feet to get out of the well. How many yards did he leap?

5. What is the perimeter of this isosceles triangle in centimeters?

6. This is the tally for what number?
7. About how much liquid is in this medicine dropper?
 A. 2 milliliters
 B. 2 liters
 C. 2 pints

8. \(87 + 0 = 87 \times N \)

9. One third of the 24 students finished early. How many students finished early? Draw a picture to illustrate the problem.

10. What percent of a dollar is a quarter?

11. \(\begin{array}{c}
478.63 \\
+ 32.47
\end{array} \)

12. \(\begin{array}{c}
137,140 \\
- 129,536
\end{array} \)

13. \(\begin{array}{c}
60.00 \\
- 24.38
\end{array} \)

14. \(70 \times 90 \)

15. \(11 \times 13 \)

16. \(12 \times 12 \)

17. \(\begin{array}{c}
4.76 \\
\times 8
\end{array} \)

18. \(\begin{array}{c}
21 \\
\times 13
\end{array} \)

19. \(\begin{array}{c}
21 \\
\times 21
\end{array} \)

20. \(\begin{array}{c}
3000 \\
\div 4
\end{array} \)

21. \(\begin{array}{c}
5635 \\
\div 5
\end{array} \)

22. \(\begin{array}{c}
426 \\
\div 7
\end{array} \)

23. \(\begin{array}{c}
3614 \\
\div 8
\end{array} \)

24. \(\begin{array}{c}
2736 \\
\div 6
\end{array} \)

25. How much is one fourth of $10.00?

26. Draw and shade circles to show that \(1\frac{1}{2} \) equals \(\frac{3}{2} \).

27. Draw a rectangle that is 5 cm long and 4 cm wide.

28. What is the perimeter and area of the rectangle you drew in problem 27?

29. In this polygon, which side appears to be parallel to side \(BC \)?

30. Which two-digit number less than 20 is a multiple of both 4 and 6?
Recall the three steps for multiplying two two-digit numbers:

Step 1: Multiply by the ones digit.

Step 2: Multiply by the tens digit.

Step 3: Add to find the total.

Example 1 Multiply: \[
\begin{array}{c}
46 \\
\times 27
\end{array}
\]

Solution The first step is to multiply 46 by 7. The product is 322.

\[
\begin{array}{c}
46 \\
\times 27
\end{array}
\]

The second step is to multiply 46 by the 2 of 27. We multiply 6 by 2 and get 12. Since we are actually multiplying by 20, we record the 2 in the tens column and carry the 1 above the 4.
(We ignore the 4 that we carried in the first step.) Then we multiply 4 by 2 and add the 1 to get 9.

\[
\begin{array}{c}
\frac{1}{4} \\
46 \\
\times 27 \\
\hline
322 \\
92
\end{array}
\]

The third step is to add the products. The total product is **1242**.

\[
\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} \\
46 & 46 \\
\times 27 & \times 27 \\
322 & 322 \\
92 & 920 \\
\hline
1242 & 1242
\end{array}
\]

Example 2 Multiply: \[
\frac{46}{\times 72}
\]

Solution First we multiply 46 by 2 and get 92.

\[
\begin{array}{c}
\frac{1}{4} \\
46 \\
\times 72 \\
\hline
92
\end{array}
\]

Next we multiply 46 by 7 and then add the products to get **3312**.

\[
\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} \\
46 & 46 \\
\times 72 & \times 72 \\
92 & 92 \\
322 & 3220 \\
\hline
3312 & 3312
\end{array}
\]

LESSON PRACTICE

Practice set Multiply:

<table>
<thead>
<tr>
<th>a. 38</th>
<th>b. 49</th>
</tr>
</thead>
<tbody>
<tr>
<td>× 26</td>
<td>× 82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c. 84</th>
<th>d. 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>× 67</td>
<td>× 48</td>
</tr>
</tbody>
</table>
Problem set Use the information in the graph to answer problems 1–3.

1. How many baskets did Joe make in the first game?
(Inv. 6)

2. Each basket is worth 2 points. How many points did Joe score in Game 5?
(49, Inv. 6)

3. How many more points did Joe score in Game 5 than in Game 3?
(Inv. 6)

4. The 3-pound melon cost $1.44. What was the cost per pound?
(52)

5. Jim spun all the way around in the air and dunked the basketball. Jim turned about how many degrees?
(75)

6. Sammy bought a pair of shoes priced at $47.99. The sales tax was $2.88. Sammy gave the clerk $60.00. How much money should he get back?
(83)

7. If the perimeter of a square is 1 foot, how many inches long is each side?
(Inv. 2)

8. A dollar bill weighs about 1 gram. Use this information to estimate the number of dollar bills it would take to weigh 1 kilogram.
(77)

9. One fourth of the 64 clowns had red noses. How many clowns had red noses? Draw a picture to illustrate the problem.
(70)

10. What percent of the clowns in problem 9 did not have red noses?
(Inv. 5, 70)
11. Kerry knew that her trip would take about 7 hours. If she left at half past nine in the morning, around what time should she arrive?

12. Jill’s boat holds 42 containers. Each container can hold 8 big fish. How many big fish can Jill put in her 42 containers?

13. Eighty-eight horseshoes are enough to shoe how many horses?

14. Triangles ABC and DEF are congruent. Which transformations would move $\triangle ABC$ to the same position as $\triangle DEF$?

15. Which of these words does not describe the triangles in problem 14?
 A. similar B. obtuse C. scalene D. isosceles

16. $0.625 - (0.5 + 0.12)$ 17. 47×100

18. $\frac{328}{4}$ 19. $\frac{43}{32}$ 20. $\frac{25}{35}$

21. $\frac{4317}{5}$ 22. $\frac{40.00}{8}$ 23. $\frac{3963}{6}$

24. $426 \div 3$ 25. $2524 \div 4$ 26. 60×700

27. Draw and shade circles to show that $2\frac{1}{2}$ equals $\frac{5}{2}$.

28. $4 + 3 + 27 + 35 + 8 + N = 112$

29. Segment BC is 1.7 cm long. How many centimeters long is segment AB?

30. Write a decimal addition problem that is illustrated by the lengths of segments AB, BC, and AC in problem 29.
Investigation 9

Focus on

Investigating Fractions with Manipulatives

Fraction manipulatives can help us better understand fractions. In this investigation students will make and use their own set of fraction manipulatives by cutting circles into equal-size parts.

Materials needed:

- photocopies of Activity Masters 15, 16, and 17 (1 copy of each master per student; masters available in Saxon Math 5/4 Assessments and Classroom Masters)
- scissors
- envelopes or locking plastic bags (optional)

Note: Color-coding the fraction manipulatives makes sorting easier. If you wish to color-code the manipulatives, photocopy each master on a different color of construction paper. Following the activity, each student may store the fraction manipulatives in an envelope or plastic bag for use in later lessons.

Preparation:

Distribute materials. Have students separate the fraction manipulatives by cutting out the circles and cutting apart the fraction slices along the lines.

Activity: Using Fraction Manipulatives

Use your fraction manipulatives to help you with the following exercises:

1. Another name for \(\frac{1}{4} \) is a quarter. How many quarters of a circle does it take to form a whole circle? Show your work.

2. Fit two quarter circles together to form a half circle. That is, show that \(\frac{2}{4} \) equals \(\frac{1}{2} \).
3. How many $\frac{1}{8}$ pieces are needed to form $\frac{1}{4}$ of a circle? Show your work.

4. How many $\frac{1}{8}$ pieces are needed to form $\frac{1}{2}$ of a circle? Show your work.

5. This number sentence shows how to make a whole circle using half circles:

$$\frac{1}{2} + \frac{1}{2} = 1$$

Write a number sentence that shows how to make a whole circle using only quarter circles.

6. Write a number sentence that shows how to make a whole circle using a half circle and some quarter circles.

7. Write a number sentence that shows how to make a whole circle using a half circle, a quarter circle, and some one-eighth circles.

Manipulatives can help us compare fractions. Use your fraction manipulatives to illustrate and answer each comparison:

8. $\frac{1}{2} \bigcirc \frac{2}{4}$

9. $\frac{1}{2} \bigcirc \frac{3}{8}$

10. $\frac{1}{4} \bigcirc \frac{3}{8}$

11. $\frac{3}{4} \bigcirc \frac{4}{8}$

Manipulatives can also help us reduce fractions. When we reduce a fraction, we do not change the size of the fraction. We just use smaller numbers to name the fraction. (With manipulatives, we use fewer pieces to form the fraction.) For example, we may reduce $\frac{2}{4}$ to $\frac{1}{2}$. Both $\frac{2}{4}$ and $\frac{1}{2}$ name the same portion of a whole, but $\frac{1}{2}$ uses smaller numbers (fewer pieces) to name the fraction.

Use your fraction manipulatives to help you reduce the fractions in problems 12–14.

12. $\frac{2}{8}$

13. $\frac{4}{8}$

14. $\frac{6}{8}$
Manipulatives can also help us add and subtract fractions. Illustrate each addition below by combining fraction manipulatives. Record each sum.

15. \(\frac{1}{4} + \frac{2}{4} \)

16. \(\frac{2}{8} + \frac{3}{8} \)

17. \(\frac{4}{8} + \frac{3}{8} \)

To illustrate each subtraction in problems 18–20, form the first fraction; then separate the second fraction from the first fraction. Record what is left of the first fraction as your answer.

18. \(\frac{3}{4} - \frac{2}{4} \)

19. \(\frac{4}{8} - \frac{1}{8} \)

20. \(\frac{2}{2} - \frac{1}{2} \)

Fraction manipulatives can help us understand how fractions and percents are related. Use the percent labels on your manipulatives to answer these problems:

21. One half of a circle is what percent of a circle?

22. What percent of a circle is \(\frac{1}{4} \) of a circle?

23. What percent of a circle is \(\frac{3}{4} \) of a circle?

Fraction manipulatives can help us understand how fractions and decimals are related. Use the decimal labels on your manipulatives to answer these problems:

24. What decimal number is equivalent to \(\frac{1}{2} \)?

25. What decimal number is equivalent to \(\frac{1}{4} \)?

26. What decimal number is equivalent to \(\frac{1}{8} \)?

27. Compare: \(0.125 \bigcirc 0.25 \)
28. Form a half circle using two $\frac{1}{4}$ pieces. Here is a fraction number sentence for the model:

$$\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Write an equivalent number sentence using the decimal numbers on the pieces.

29. Compare: $0.50 \bigcirc 0.5$

30. Form a half circle using four $\frac{1}{8}$ pieces. Here is a fraction number sentence for the model:

$$\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$$

Write an equivalent number sentence using the decimal numbers on the pieces.

31. Compare: $0.500 \bigcirc 0.5$

32. Form $\frac{3}{4}$ of a circle two ways. For one way use three $\frac{1}{4}$ pieces. For the other way use a $\frac{1}{2}$ piece and a $\frac{1}{4}$ piece. Here are the two fraction number sentences for these models:

$$\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4} \quad \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

Write equivalent number sentences using the decimal numbers on these pieces.

33. Form a whole circle using four $\frac{1}{4}$ pieces. Then take away one of the $\frac{1}{4}$ pieces. Here is a fraction number sentence for this subtraction. Write an equivalent number sentence using the decimal numbers on the pieces.

$$1 - \frac{1}{4} = \frac{3}{4}$$

34. Form a half circle using four $\frac{1}{8}$ pieces. Then take away one of the pieces. Here is a fraction number sentence for this subtraction. Write an equivalent number sentence using the decimal numbers on the pieces.

$$\frac{1}{2} - \frac{1}{8} = \frac{3}{8}$$
35. Here we show $\frac{3}{4}$ of a circle and $\frac{1}{2}$ of a circle:

We see that $\frac{3}{4}$ is greater than $\frac{1}{2}$. In fact, we see that $\frac{3}{4}$ is greater than $\frac{1}{2}$ by a $\frac{1}{4}$ piece. Here we show a “larger-smaller-difference” number sentence for this comparison:

$$\frac{3}{4} - \frac{1}{2} = \frac{1}{4}$$

Write an equivalent number sentence using the decimal numbers on the pieces.
WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:
Find half of a product:
- a. half of 10×12
- b. half of 10×24
- c. half of 10×480

Review:
- d. $20.00 - 17.50$
- e. $56 + 239$
- f. $284 - 65$

Roman numerals:
- g. Write 12 in Roman numerals.
- h. Write VII in our number system.

Problem Solving:
There were two gallons of punch for the class party. The punch was served in 8-ounce cups. Two gallons of punch was enough to fill how many cups? (Remember that 16 ounces is a pint, two pints is a quart, two quarts is a half gallon, and two half gallons is a gallon.)

NEW CONCEPT

Thinking about money can help us understand decimal place value.

We have used 100, 10, and 1 bills to represent place values to the left of the decimal point. To the right of the decimal point, we see the tenths, hundredths, and thousandths places. Since a dime is $\frac{1}{10}$ of a dollar, the

In Lessons 91–105 the Mental Math section “Roman numerals” reviews concepts from Appendix Topic B. Skip these Warm-up problems if you have not covered Appendix Topic B.
tenths place is for dimes. The number of pennies goes in the hundredths place because a penny is \(\frac{1}{100} \) of a dollar. The third place to the right of the decimal point is the thousandths place. We do not have a coin for a thousandth of a dollar, but we do have a name for it. A thousandth of a dollar is a \textit{mill}. So one mill is \(\frac{1}{1000} \) of a dollar, and ten mills equals one cent.

\section*{Example 1} Which digit in 12.875 is in the tenths place?

\textbf{Solution} To identify decimal place value, we pay attention to the decimal point, not to the end of the number. The tenths place is the first place to the right of the decimal point. The digit in the tenths place is \textbf{8}.

\section*{Example 2} Which digit is in the hundredths place in each of these two decimal numbers?

(a) 4.37

\textbf{Solution} We focus on the decimal point. The hundredths place is the second place to the right of the decimal point.

(a) The second place to the right of the decimal point in 4.37 is \textbf{7}.

(b) The second place to the right of the decimal point in 4.370 is also \textbf{7}.

Notice in example 2 that each digit in 4.37 holds the same place in 4.370.

\begin{center}
\begin{tabular}{ccc}
ones & tenths & hundredths & thousandths \\
4 & 3 & 7 & \\
4 & 3 & 7 & 0 \\
\end{tabular}
\end{center}

The zero in the thousandths place in 4.370 does not add value. So 4.37 and 4.370 are equal.

\[4.37 = 4.370 \]
Example 3 Compare: 23.25 \(\bigcirc\) 23.250

Solution We will write the numbers with the decimal points aligned and compare the numbers place by place.

\[
\begin{array}{c}
23.25 \\
23.250
\end{array}
\]

Both numbers have the same digits in the same places. The zero in the thousandths place of 23.250 adds no value. So the numbers are equal.

\[23.25 = 23.250\]

When performing decimal arithmetic, it is often helpful to attach one or more zeros to the end of a decimal number, as we see below. The attached zeros do not add value, so the original problem remains the same.

Example 4 Subtract: 4.37 \(-\) 1.146

Solution We line up the decimal points whenever we add or subtract decimal numbers. This ensures that we add or subtract digits with the same place values. In this example, notice that there is no digit to subtract the 6 from. We may fill the empty place with a zero because 4.370 equals 4.37. Then we can subtract. The answer is 3.224.

<table>
<thead>
<tr>
<th>[4.370 \quad - \quad 1.146]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\underline{4.370} \quad \underline{\text{6}}]</td>
</tr>
<tr>
<td>[\underline{4.370} \quad - \quad \underline{1.146}]</td>
</tr>
<tr>
<td>[\underline{3.224}]</td>
</tr>
</tbody>
</table>

LESSON PRACTICE

Practice set a. Which digit in 4.370 is in the hundredths place?

b. Which digit in 4.370 is in the same place as the 2 in 15.24?

c. Name the place value of the 4 in the number 1.234.

d. Which two numbers below are equal?

A. 12.34
B. 12.340
C. 1.234

e. Compare: 3.25 \(\bigcirc\) 32.50

f. Compare: 3.250 \(\bigcirc\) 3.25

Subtract. Show your work for each problem.

g. 12.34 \(-\) 1.234
h. 1.2 \(-\) 0.12
Problem set

1. Three quarters, four dimes, two nickels, and seven pennies is how much money?

2. Carmen separated the 37 math books as equally as possible into 4 stacks.
 (a) How many stacks had exactly 9 books?
 (b) How many stacks had 10 books?

3. Lily paid $1 for a folder and received 52¢ back in change. If the tax was 3¢, how much did the folder cost without tax?

4. Frank wrote each of his 12 spelling words five times. In all, how many words did he write?

5. Round 5456 to the nearest thousand. Round 2872 to the nearest thousand. Find the sum of the two rounded numbers.

6. What is the tally for 10?

7. Name the shaded part of this square
 (a) as a fraction.
 (b) as a decimal number.

8. One sixth of the 48 crayons are broken. How many crayons are broken? Draw a picture to illustrate the problem.

9. Segment AB is 32 mm long. Segment BC is 26 mm long. Segment AD is 91 mm long. How many millimeters long is segment CD?

10. Which digit in 6.125 is in the hundredths place?

11. If a pint of water weighs about one pound, then about how many pounds does a quart of water weigh?

12. $4.32 - 0.432$

13. $5^2 + \sqrt{25} + N = 30$
14. \(\text{\$6.08} \times \frac{8}{8} \)
15. \(47 \times 24 \)
16. \(36 \times \frac{62}{62} \)

17. \(53 \times 30 \)
18. \(63 \times 37 \)

19. \(100 \times 32 \)
20. \(\overline{43456} \)

21. \(\overline{6912} \)
22. \(7\overline{50.40} \)

23. Draw and shade circles to show that \(1\frac{1}{4} \) equals \(\frac{5}{4} \).

24. Draw a square with sides 4 cm long.

25. Shade 50% of the square you drew in problem 24. How many square centimeters did you shade?

26. Write twenty-one thousandths as a fraction and as a decimal number.

27. Which of these polygons has no lines of symmetry?
 A. \(\triangle \) B. \(\square \) C. \(\square \) D. \(\square \)

28. Which polygon in problem 27 is not a quadrilateral?

29. In half an hour the minute hand of a clock turns how many degrees?

30. Compare: \(4.2 \bigcirc 4.200 \)
Recall from Lesson 63 that a quadrilateral is a polygon with four sides. In this lesson we will practice recognizing and naming different types of quadrilaterals. Below we show five different types.

A parallelogram is a quadrilateral with two pairs of parallel sides. Figures A, B, C, and D each have two pairs of parallel sides. A trapezoid is a quadrilateral with exactly one pair of parallel sides. So figure E is not a parallelogram; it is a trapezoid.
A rectangle is a special type of parallelogram that has four right angles. So figures C and D are rectangles. A rhombus is a special type of parallelogram whose sides are equal in length. So figure B is a rhombus, as is figure D. A square is a regular quadrilateral. Its sides are equal in length, and its angles are all right angles. Figure D is a square. It is also a parallelogram, a rhombus, and a rectangle.

Example Which of these quadrilaterals is not a parallelogram?

Solution We look for pairs of parallel sides. A parallelogram has two pairs of parallel sides. Figures F, G, and I each have two pairs of parallel sides. Figure H has only one pair of parallel sides, so it is a trapezoid, not a parallelogram.

LESSON PRACTICE

Practice set Describe each quadrilateral as a trapezoid, parallelogram, rhombus, rectangle, or square. (More than one description may apply to each figure.)

MIXED PRACTICE

Problem set Use this information to answer problems 1–3:

Mary invited 14 friends for lunch. She plans to make 12 tuna sandwiches, 10 bologna sandwiches, and 8 roast beef sandwiches.

1. How many sandwiches will Mary make in all?

2. Including Mary, each person can have how many sandwiches?

3. If Mary cuts each tuna sandwich in half, how many halves will there be?
4. Five pounds of grapes cost $2.95. What was the cost per pound?

5. If each side of a hexagon is 4 inches long, what is the perimeter of the hexagon in feet?

6. Nine million, four hundred thousand is how much greater than two million, seven hundred thousand?

7. Name the shaded part of the large square
 (a) as a fraction.
 (b) as a decimal number.

8. Use words to write $7572 \frac{1}{8}$.

9. One fifth of the 80 chariots lost wheels in the chase. How many of the chariots lost wheels? Draw a picture to illustrate the problem.

10. What percent of the chariots in problem 9 lost wheels?

11. Franca began the trip when it was still dark. She finished the trip a couple of hours later. According to the clocks shown below, exactly how long did the trip take?

12. James traveled 301 miles in 7 hours. He traveled an average of how many miles per hour?

13. Marvin bought 3 folders priced at $1.99 each. Sales tax was 33¢. He paid with a $20 bill. How much money should Marvin get back?

14. $25 + $2.75 + $15.44 + 27¢
15. 6.2 - 0.26

16. $100 - $89.85

17. 60 × 900

18. 42 × 30

19. 21 × 17

20. $\frac{36}{74}$

21. $\frac{48}{25}$

22. $\frac{4.79}{6}$

23. $9\sqrt{2718}$

24. $5\sqrt{4815}$

25. $6\sqrt{4829}$

26. $\frac{50.00}{8}$

27. $\frac{2100}{7}$

28. 0.875 - (0.5 + 0.375)

29. This polygon is what type of quadrilateral?

30. Draw and shade rectangles to show that $1\frac{2}{3}$ equals $\frac{5}{3}$.
Lesson 93

Estimating Multiplication and Division Answers

WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:

Five is half of 10. To multiply by 5, we may multiply by half of 10. For example, 5×12 equals half of 10×12. Find each product by multiplying by “half of 10”:

- a. 5×16
- b. 5×24
- c. 5×28
- d. 5×64

Roman numerals:

- e. Write 9 in Roman numerals.
- f. Write IV in our number system.

Problem Solving:

About what percent of the circle is darkly shaded? About what percent of the circle is lightly shaded?

NEW CONCEPT

Estimation can help prevent mistakes. If we estimate the answer before we multiply, we can tell whether our answer is reasonable.

Example 1

Jim multiplied 43 by 29 and got 203. Is Jim’s answer reasonable?

Solution

We estimate the product of 43 and 29 by multiplying the rounded numbers 40 and 30.

$$40 \times 30 = 1200$$

Jim’s answer of 203 and our estimate of 1200 are very different, so Jim’s answer is **not reasonable.** He should check his work.
Example 2 Estimate the product of 38 and 53. Then find the exact answer.

Solution We estimate the product by multiplying the rounded numbers 40 and 50.

\[
40 \times 50 = 2000
\]

Then we find the exact answer.

\[
\begin{array}{c}
38 \\
\times 53 \\
\end{array}
\]

\[
\begin{array}{c}
114 \\
190 \\
2014
\end{array}
\]

Our estimate of the product was 2000, so our answer of 2014 is reasonable.

Example 3 Estimate the quotient when 1845 is divided by 6.

Solution We choose a number close to 1845 that is easily divided by 6. We know that 18 is a multiple of 6, so we choose 1800. We can calculate mentally: “18 hundred divided by 6 is 3 hundred.”

\[
1800 \div 6 = 300
\]

LESSON PRACTICE

Practice set Estimate each product or quotient. Then find the exact answer.

a. \(58 \times 23\)

b. \(49 \times 51\)

c. \(61 \times 38\)

d. \(1845 \div 9\)

MIXED PRACTICE

Problem set

1. Ninety-one students are divided as equally as possible among 3 classrooms.

 (a) How many classrooms have exactly 30 students?

 (b) How many classrooms have 31 students?

2. In 1970 it cost 6¢ to mail a letter. How much did it cost to mail twenty letters in 1970?

3. What number is seven hundred ninety more than two hundred ten?
4. George Washington was born in 1732 and died in 1799. About how many years did he live?

5. A $1 bill weighs about 1 gram. How much would a $5 bill weigh?

6. This is the tally for what number?

7. Name the shaded part of the large square
 (a) as a fraction.
 (b) as a decimal number.

8. Estimate the product of 49 and 62.

9. One half of the 32 chess pieces were still on the board. How many chess pieces were still on the board? Draw a picture to illustrate the problem.

10. Miriam left home at 10:30 a.m. She traveled for 7 hours. What time was it when she arrived?

11. Mark traveled 42 miles in 1 hour. If he kept going at the same speed, how far would he travel in 20 hours?

12. Violet gave the cashier $40 for a toaster that cost $29.99 plus $1.80 in tax. How much money should she get back?

13. Connor faced the sun as it set in the west, then turned 90° counterclockwise and headed home. In what direction was Connor heading after the turn?

14. $N + 8 + 2 + 3 + 5 + 2 = 24$

15. $4.12 - (3.6 + 0.2 + 0.125)$

16. $\$18 - \15.63

17. $\$15.27 + \85.75
18. $2^3 \times \sqrt{25}$
20. 7.50×8
19. 30×90
21. 49×62

22. 54×23
23. 74×40

24. $4 \overline{)6.36}$
25. $5 \overline{)800}$

26. $4735 \div 8$
27. $1800 \div 3$

28. Estimate the quotient when 1520 is divided by 5. Then find the exact quotient.

29. Draw and shade circles to show that $2\frac{1}{4}$ equals $\frac{9}{4}$.

30. Find the perimeter and area of this rectangle.

\[
\begin{array}{c}
50 \text{ ft} \\
20 \text{ ft}
\end{array}
\]
Lesson 94

Two-Step Word Problems

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:
Find each product by multiplying by “half of 10”:

- a. 5×46
- b. 5×62
- c. 5×240

Review:

- d. $24.87 + 1.95$
- e. $73 - 35$
- f. $76 + 38$

Roman numerals:

- g. Write 30 in Roman numerals.
- h. Write XIV in our number system.

Patterns:

Each number in this sequence is one half of the preceding number in the sequence. Find the next five numbers.

..., 64, 32, 16, 8, ___, ___, ___, ___, ___,

NEW CONCEPT

We have practiced two-step word problems that involved finding total costs (including tax) and change back. Starting with this lesson, we will practice other kinds of two-step word problems. Writing down the given information or drawing a picture is often helpful in solving these problems.

Example 1

Jim is 5 years older than Ali. Ali is 2 years younger than Blanca. Blanca is 9 years old. How old is Jim?

Solution

We will use two steps to solve the problem. First we will use Blanca’s age to find Ali’s age. Then we will use Ali’s age to calculate Jim’s age. We write down the given information.

Blanca is 9 years old.

Ali is 2 years younger than Blanca.

Jim is 5 years older than Ali.

We know that Blanca is 9 years old. Ali is 2 years younger than Blanca, so Ali is $9 - 2$, or 7 years old. Jim is 5 years older than Ali, so Jim is $7 + 5$, or **12 years old**.
Example 2 Carlos paid for 5 pounds of apples with a $10 bill. He got back $6. What was the cost of each pound of apples?

Solution We begin by finding how much all 5 pounds of apples cost. If Carlos paid for the apples with a $10 bill and got $6 back, then all 5 pounds must have cost $4.

\[
\begin{array}{c}
$10 \quad \text{amount paid} \\
- \quad $ 6 \quad \text{change back} \\
\hline
$ 4 \quad \text{cost of 5 pounds of apples}
\end{array}
\]

To find the cost of each pound of apples, we divide $4 by 5.

\[
\begin{array}{c}
$0.80 \\
5)\$4.00 \\
\hline
\quad 40 \\
\hline
\quad 00 \\
\hline
\quad 0 \\
\hline
\quad 0
\end{array}
\]

Each pound of apples cost $0.80.

LESSON PRACTICE

Practice set a. Nancy paid for 4 pounds of peaches with a $5 bill. She got back $3. What was the cost of each pound of peaches? \((Hint: \text{ First find the cost of 4 pounds of peaches.})\)

b. The perimeter of this square is 12 inches. What is the area of the square? \((Hint: \text{ First find the length of each side.})\)

c. Robert is 10 years younger than John, and John is 2 years older than Jenny. If Robert is 13 years old, how old is Jenny? \((Hint: \text{ First find how old John is.})\)

MIXED PRACTICE

Problem set 1. Gabriel gave the clerk a $5 bill to pay for a half gallon of milk that cost $1.06 and a box of cereal that cost $2.39. How much money should he get back?

2. Eighty-one animals crossed the bridge. One third of them were billy goats. The rest were bears. How many bears crossed the bridge? \((Hint: \text{ First find how many billy goats crossed the bridge.})\)
3. Johnny planted 8 rows of apple trees. There were 15 trees in each row. How many trees did he plant?

4. Four pounds of bananas cost Titania one hundred fifty-six rubles. Each pound of bananas cost how many rubles?

5. This scale shows a mass of how many grams?

6. Write the tally for 16.

7. Name the shaded part of the large square
 (a) as a fraction.
 (b) as a decimal number.

8. Estimate the product of 32 and 48. Then find the exact product.

9. One third of the 24 camels were Bactrian. How many camels were Bactrian? Draw a picture to illustrate the problem.

10. A quart is a quarter of a gallon. A quart is what percent of a gallon?

11. For each statement, write either “true” or “false.”
 (a) Every square is also a rectangle.
 (b) Every rectangle is also a square.

12. Four hundred seventy-one of the one thousand students in the school were girls. Girls made up what fraction of the students in the school?

13. Write the answer to problem 12 as a decimal number.
 Then use words to name the number.
14. Which digit in 1.875 is in the tenths place?

15. Matthew traveled 496 miles in 8 hours. He traveled an average of how many miles per hour?

16. \(8.3 - (1.74 + 0.9)\)

17. \(63 \times 1000\)

18. \(80 \times 50\)¢

19. \(37\)

20. \(52 \times 15\)

21. \(36 \times 27\)

22. \(2 \overline{714}\)

23. \(6 \overline{789} + 60\)

24. \(3N = 624\)

25. \(5 + W = 5^2\)

26. Draw and shade rectangles to show that \(1\frac{2}{5}\) equals \(\frac{7}{5}\).

27. A room is 5 yards long and 4 yards wide. How many square yards of carpeting are needed to cover the floor?

28. The radius of this circle is 15 millimeters. The diameter of the circle is how many centimeters?

29. Which of these letters has two lines of symmetry?

30. The angle formed by the letter V in problem 29 measures about how many degrees?

A. 45° B. 90° C. 135° D. 180°
Lesson 95

Two-Step Problems About a Fraction of a Group

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:
Find half of a product:
 a. half of 100×12 b. half of 100×24 c. half of 100×48

Review:
 d. $10.00 - $4.89 e. $151 - 27$ f. $340 + 60 + 200$

Roman numerals:
 g. Write 15 in Roman numerals.
 h. Write XXV in our number system.

Problem Solving:
On February 4 Edgar remembered that his two library books were due on January 28. The fine for late books is 15¢ per book per day. If he returns the books on February 4, what will be the total fine?

NEW CONCEPT

The word problems in this lesson are two-step problems involving fractions of a group. First we divide to find the number in one part. Then we multiply to find the number in more than one part.

Example 1 There were 30 campers in the forest. Three fifths of them wore green jackets. How many campers wore green jackets?

Solution The word fifths tells us there were 5 equal groups. First we find the number of campers in each group. Since there were 30 campers in all, we divide 30 by 5.

$$\frac{6}{5\overline{3}0}$$
There were 6 campers in each group. We draw this diagram:

Three fifths wore green jackets. In three groups there were \(3 \times 6\) campers. That is, **18 campers** wore green jackets. We also see that two groups did not wear green jackets, so 12 campers did not wear green jackets.

Example 2 Two thirds of the 24 elves worked in the toy factory. How many elves worked in the toy factory?

Solution First we divide 24 by 3 and find that the number of elves in each third was 8.

Then we multiply 8 by 2 and find that the number of elves in two thirds was 16. We have found that **16 elves** worked in the toy factory.

LESSON PRACTICE

Practice set Diagram each problem. Then answer the question.

- **a.** Three fourths of the 24 checkers were still on the board. How many checkers were still on the board?

- **b.** Two fifths of the 30 soldiers guarded the fort. How many soldiers guarded the fort?

- **c.** Three eighths of the 40 students had perfect scores. How many students had perfect scores?
Problem set Use this tally sheet to answer problems 1–3:

<table>
<thead>
<tr>
<th>Name</th>
<th>Tally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irma</td>
<td>HHT</td>
</tr>
<tr>
<td>Brad</td>
<td>HHT 1</td>
</tr>
<tr>
<td>Thanh</td>
<td>HHT III</td>
</tr>
<tr>
<td>Marisol</td>
<td>HHT HHT II</td>
</tr>
</tbody>
</table>

1. Who was second in the election? *(Inv. 7)*

2. Who received twice as many votes as Brad? *(Inv. 7)*

3. Altogether, how many votes were cast? *(Inv. 7)*

4. Two fifths of the 20 balloons were yellow. How many balloons were yellow? Draw a picture to illustrate the problem. *(95)*

5. Tim is 5 years younger than Brad. Brad is 2 years older than Linda. Linda is 11 years old. How old is Tim? *(94)*

6. Name the shaded part of this group *(Inv. 4, 74)*

 (a) as a fraction.

 (b) as a decimal number.

7. The fraction $\frac{1}{10}$ equals 10%. What percent of the group in problem 6 is shaded? *(Inv. 5)*

8. Estimate the product of 88 and 59. Then find the exact product. *(93)*

9. Sue’s birthday is May 2. Her birthday will be on what day of the week in the year 2045? *(54)*

<table>
<thead>
<tr>
<th>MAY 2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>21 22 23 24 25 26 27</td>
</tr>
<tr>
<td>28 29 30 31</td>
</tr>
</tbody>
</table>

10. Segment AB is 17 mm long. Segment CD is 36 mm long. Segment AD is 89 mm long. How long is segment BC? *(45, 69)*
11. $32.63 + $42 + $7.56
12. $86.45 - ($74.50 + $5)

13. 83 × 40
14. 1000 × 53
15. 9² - √81

16. 32 × 16
17. 67 × 32
18. $8.95 × 4

19. 3)625
20. 4)714
21. 6)1385

22. \frac{900}{5}
23. 3748 ÷ 9
24. $28.56 ÷ 8

25. This circle shows that \frac{2}{2} equals 1. Draw a circle that shows that \frac{3}{3} equals 1.

26. Find the perimeter and area of this rectangle.

27. Draw a quadrilateral on your paper congruent to this quadrilateral. Then write the name for this type of quadrilateral.

28. On the figure you made for problem 27, draw the line of symmetry.

29. Compare: 0.05 ○ 0.050

30. Estimate the quotient when 2412 is divided by 6. Then find the exact quotient.
Lesson 96

Average

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:
Fifty is half of 100. Find each product by multiplying by half of 100:
 a. 50×16 b. 50×44 c. 50×26 d. 50×68

Review:
 e. $32.48 + 4.99$ f. $96 - 29$ g. $156 + 45$

Roman numerals:
 h. Write 14 in Roman numerals.
 i. Write XXXIII in our number system.

Patterns:
Copy this sequence on your paper, and continue it up to the first number you reach that is greater than 500.
 1, 2, 4, 8, 16, ...

NEW CONCEPT

Here we show three stacks of pancakes:

There are 15 pancakes in all. If we rearrange the pancakes to have an equal number in each stack, we get 5 pancakes in each stack.

We say that the average number of pancakes in each stack is 5. Finding an average is a two-step problem. First we find how many there are altogether. Then we find how many there would be in each group if the groups were equal.
Example Four vans carried the team to the soccer field. There were 5 players in the first van, 4 players in the second van, 3 players in the third van, and 8 players in the fourth van. What was the average number of players per van?

Solution The average is the number of players there would be in each van if each van carried the same number of players. Imagine starting over and reloading the vans equally. First we need to find the total number of players. We find the total by adding the number of players in each van.

\[
\begin{align*}
\text{Total players} &= 5 \text{ players} + 4 \text{ players} + 3 \text{ players} + 8 \text{ players} \\
&= 20 \text{ players}
\end{align*}
\]

Since there were four vans, we divide the 20 players into four equal groups.

\[
\frac{20 \text{ players}}{4 \text{ vans}} = 5 \text{ players in each van}
\]

If the vans had been loaded equally, there would have been 5 players in each van. Even though the vans were not loaded equally, the average number of players per van was 5 players.

LESSON PRACTICE

Practice set a. In three classrooms there were 24, 26, and 28 children. What was the average number of children per classroom?

b. There were two stacks of books on the shelf, one with 17 books and the other with 11 books. Allison moved some of the books from the taller stack to the shorter stack so that the number of books in the two stacks was equal. When she finished, how many books were in each stack?

c. Spencer’s scores on his first three tests were 85, 85, and 100. What was the average of his first three test scores?

MIXED PRACTICE

Problem set 1. Freddie is 2 years older than Francesca. Francesca is twice as old as Becky. Becky is 6 years old. How old is Freddie?

2. What is the total number of days in the first three months of a leap year?
3. It costs $1.52 to mail the package. Taro put three 37-cent stamps on the package. How much more postage does Taro need to mail the package?

4. Thirty-two desks were arranged as equally as possible in 6 rows.
 (a) How many rows had exactly 5 desks?
 (b) How many rows had 6 desks?

5. Two thirds of the 21 riders rode bareback. How many riders rode bareback? Draw a picture to illustrate the problem.

6. (a) What decimal number names the shaded part of the large square?
 (b) What decimal number names the part that is not shaded?

7. Each small square in problem 6 is 1% of the large square. What percent of the large square is shaded?

8. Round 3874 to the nearest thousand.

9. Beth opened a liter of milk and poured half of it into a pitcher. How many milliliters of milk did she pour into the pitcher? What percent of the milk was still in the container?

10. The sun was up when Mark started. It was dark when he stopped later in the day. How much time had gone by?

11. For five days Pilar recorded the high temperature. The temperatures were 79°F, 82°F, 84°F, 81°F, and 74°F. What was the average high temperature for those five days?
12. Mickey drove 368 miles in 8 hours. If she drove the same number of miles each hour, how far did she drive each hour?

13. \[496,325 + 3,680 = \] 500,005

14. $36.00 - $30.78 = $5.22

15. $12.45

16. 26 \times 24 = 624

17. 25 \times 25 = 625

18. $16.40 \div 8 = $2.05

19. 60 \times 300 = 18,000

20. $8.56 \times 7 = 59.92

21. $7 | 845 \div 9 | 1000 = $0.85

22. $432 \div 6 = 72

24. Draw and shade a circle that shows that \(\frac{4}{4} \) equals 1.

25. The wall was 8 feet high and 12 feet wide. How many square feet of wallpaper were needed to cover the wall?

Below are Spencer’s scores on the first seven tests. Refer to these scores to answer problems 26–28.

85, 85, 100, 90, 80, 100, 85

26. Rearrange the scores so that the scores are in order from lowest to highest.

27. In your answer to problem 26, which score is the middle score in the list?

28. In the list of test scores, which score occurs most frequently?

29. Estimate the quotient when 912 is divided by 3. Then find the exact quotient.

30. According to many health experts, a person should drink 64 ounces of water each day. If Amy’s glass holds 8 ounces of water, how many glasses of water should she drink in one day?
Lesson 97

Mean • Median • Range • Mode

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:
Double each number:

a. 3

b. 4

c. 15

d. 50

e. 25

Review:

f. $1.00 – 42¢

g. 199 + 56

h. 43 – 25

Roman numerals:

i. Write 25 in Roman numerals.

j. Write XIX in our number system.

Problem Solving:

There are 365 days in a common year, which is about 52 weeks. However, since 52 weeks is 364 days, a year does not start on the same day of the week as the start of the preceding year. If a common year starts on a Tuesday, on what day of the week will the following year begin?

a. 3

b. 4

c. 15

d. 50

e. 25

NEW CONCEPTS

Mean

In Lesson 96 we practiced finding an average. To find the average of a set of numbers, we added the numbers and then divided by the number of numbers. Another name for the average is the mean.

Example 1

Find the mean of Ian’s seven test scores.

80, 85, 85, 10, 90, 90, 85

Solution

We add the scores and divide by the number of scores. The sum of the scores is 525. We divide the sum by 7.

\[\frac{525}{7} = 75 \]

The mean of the seven scores, the average, is 75. This means that Ian’s seven scores are equivalent to seven test scores of 75. This might seem unfair, since six of Ian’s scores were higher than 75. However, his one very low score of 10 lowered his average.

Median

The median of a set of numbers is the middle number (or the average of the two middle numbers) when the numbers are arranged in order of size.
Range The range of a set of numbers is the difference between the largest and the smallest numbers. We find the range by subtracting the smallest number from the largest number.

Example 2 Find the median and the range of Ian’s seven test scores.

80, 85, 85, 10, 90, 90, 85

Solution The median score is the middle score. To find the median score, we arrange the scores in order. We begin with the lowest score.

10, 80, 85, 85, 85, 90, 90

The scores vary from a low of 10 to a high of 90. The range is the difference of the high and low scores. We subtract 10 from 90 and find that the **range is 80**. The middle score is 85. So the **median score is 85**. Notice that the median is not affected by the low score of 10. Such a score, which is far from the other scores, is called an **outlier**. Outliers sometimes significantly affect the mean while having little or no effect on the median.

Mode The mode of a set of numbers is the number that occurs most often.

Example 3 Find the mode of Ian’s seven test scores.

80, 85, 85, 10, 90, 90, 85

Solution We see that the score of 85 appears three times. No other score appears more than twice. So the mode is 85.

LESSON PRACTICE

Practice set

a. Find the mean, median, mode, and range of Raquel’s test scores shown below. (Note: Since there is an even number of scores, the median is the average of the two middle scores.)

50, 80, 90, 85, 90, 95, 90, 100

b. Find the mean, median, mode, and range of this set of numbers:

31, 28, 31, 30, 25

c. Find the median of these test scores. Explain your answer.

75, 80, 80, 90, 95, 100
Problem set Use the information in this circle graph to answer problems 1–4.

![activities of 100 children at the park]

1. Altogether, how many children were at the park? (Inv. 6)
2. How many children were not catching polliwogs? (Inv. 6)
3. How many children were either hiking or skating? (Inv. 6)
4. How many more children were flying kites than were catching polliwogs? (Inv. 6)
5. Three fourths of the one thousand gold coins were doubloons. How many doubloons were there? Draw a picture to illustrate the problem. (Inv. 5, 95)
6. What percent of the gold coins in problem 5 were doubloons? (Inv. 5, 95)
7. Write each mixed number as a decimal:
 (a) $3\frac{5}{10}$
 (b) $14\frac{21}{1000}$
 (c) $9\frac{4}{100}$
8. Estimate the product of 39 and 406. Then find the exact product. (Inv. 2, 69)

Refer to this rectangle to answer problems 9 and 10:

![rectangle with dimensions 30 mm by 10 mm]

9. What is the perimeter of the rectangle
 (a) in millimeters?
 (b) in centimeters?
10. What is the area of the rectangle
 (a) in square millimeters?
 (b) in square centimeters?
11. Santos figured the trip would take seven and a half hours. He left at 7 a.m. At what time did he think he would arrive?

12. What is the average number of days per month in the first three months of a common year?

13. 25×40

14. $98\ц \times 7$

15. $\sqrt{36} \times \sqrt{4}$

16. $\frac{3^3}{3}$

17. $\frac{36}{34} \times \frac{35}{35}$

18. $4 \times \frac{3}{5}$

19. $\frac{4}{2}$

20. $\frac{800}{7}$

21. $\frac{6}{1234}$

22. $800 \div 7$

23. $487 \div 3$

24. $2.74 + 0.27 + $6 + 49\ц$

25. $9.487 - (3.7 + 2.36) + X$

26. Draw and shade circles to show that $2\frac{1}{3}$ equals $\frac{7}{3}$.

Below are Ian’s nine quiz scores, which range from 6 to 10. Refer to these scores to answer problems 27–30.

8, 7, 7, 8, 6, 10, 9, 10, 7

27. What is the mode of the scores?

28. What is the median of the scores?

29. What is the range of the scores?

30. What is the mean of the scores?
LESSON

98

Geometric Solids

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:

We can double one factor of a multiplication and take one half of the other factor to find the product.

\[
\begin{align*}
4 \times 18 & \quad \text{double} \\
8 \times 9 & \quad \text{half} \\
8 \times 9 & = 72
\end{align*}
\]

Find each product by the “double and half” method.

- a. \(3 \times 14\)
- b. \(4 \times 16\)
- c. \(5 \times 22\)
- d. \(50 \times 24\)

Roman numerals:

- e. Write 28 in Roman numerals.
- f. Write XXVII in our number system.

NEW CONCEPT

Shapes such as triangles, rectangles, and circles are flat shapes that cover an area but do not take up **space**. They have length and width but not depth. Objects that take up space such as cars, basketballs, desks, houses, and people. Geometric shapes that take up space are called **geometric solids**. The chart below shows the names of some geometric solids.

<table>
<thead>
<tr>
<th>Geometric Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Example 1 Name each shape:
 (a)
 (b)
 (c)

 Solution We compare each shape with the chart.
 (a) sphere (b) cube (c) cone

Example 2 What is the shape of a soup can?

 Solution A soup can has the shape of a cylinder.

Example 3 This rectangular solid is made up of how many small cubes?

 Solution We see that the rectangular solid is made up of 2 layers of cubes with 6 cubes in each layer (2 × 6 = 12). The rectangular solid is made up of 12 small cubes.

A flat surface of a solid is called a face. Two faces meet at an edge. Three or more edges meet at a corner called a vertex (plural: vertices).

Example 4 Find a closed, rectangular box in the classroom (a tissue box, for example) and answer these questions:
 (a) How many faces does the box have?
 (b) How many vertices does the box have?
 (c) How many edges does the box have?

 Solution (a) 6 faces (top, bottom, left, right, front, back)
 (b) 8 vertices (4 around the top, 4 around the bottom)
 (c) 12 edges (4 around the top, 4 around the bottom, and 4 running from top to bottom)
LESSON PRACTICE

Practice set In problems a–d, name the shape of the object listed:

a. basketball b. shoebox

c. funnel d. soda can

e. What is the shape of this Egyptian landmark?

f. The figure in problem e has a square base. How many edges does the figure have?

g. This rectangular solid is made up of how many small cubes?

MIXED PRACTICE

Problem set Use this information to answer problems 1–3:

In the Jones family there are 3 children. John is 10 years old. James is 2 years younger than Jill. James is 4 years older than John.

1. How old is James?

2. How old is Jill?

3. When James is 16 years old, how old will Jill be?

4. Denise bought an artichoke and 6 pounds of carrots for $2.76. If the artichoke cost 84¢, how much was 1 pound of carrots? (Hint: First find the cost of all the carrots.)

5. Write each mixed number as a decimal:
 (a) $5 \frac{31}{1000}$ (b) $16 \frac{7}{10}$ (c) $5 \frac{7}{100}$

6. Three fifths of the team’s 40 points were scored in the first half. How many points did the team score in the first half? Draw a picture to illustrate the problem.
7. One fifth is 20%. What percent is three fifths?

8. Use words to write 7.68.

9. Use words to write 76.8.

10. Estimate the product of 78 and 91.

11. Name the number of shaded squares below
 (a) as a mixed number.
 (b) as a decimal.

12. There were 24 people in one line and 16 people in the other line. What was the average number of people per line?

13. It is evening. What time will it be 5 hours 20 minutes from now?

14. Mr. Toto could bake 27 pizzas in 3 hours.
 (a) How many pizzas could he bake in 1 hour?
 (b) How many pizzas could he bake in 5 hours?
 Hint: Multiply the answer to part (a) by 5.

15. $3.65 + 4.2 + 0.625$

16. $13.70 - 6.85$

17. 26×100

18. $9 \times 87\frac{c}{c}$

19. 14×16

20. 15^2

21. $\frac{456}{6}$

22. $47 \div 60$

23. $6\overline{4248}$

24. $1)163$

25. $5)\overline{49.00}$

26. $1 + 3 + 5 + P + 7 + 3 + 2 + 3 = 44$
27. How many floor tiles that are one-foot square are needed to cover the floor of a room that is 15 feet long and 10 feet wide?

28. Find the median and mode of this set of numbers:

 1, 1, 2, 3, 5, 8, 13

29. What geometric shape is a globe?

30. (a) What is the geometric name for this solid?

 (b) How many faces does this solid have?
LESSON 99

Decimal Numbers and Money

WARM-UP

Facts Practice: 90 Division Facts (Test J)

Mental Math:
Find each product by the “double and half” method:

a. 3 × 18
b. 15 × 60
c. 50 × 48

Review:

d. $5.00 − $1.75
e. 299 + 125
f. 76 − 48

Roman numerals:

g. Write 31 in Roman numerals.

h. Write XXIV in our number system.

Problem Solving:

Emily can walk twice as fast as she can swim. She can run twice as fast as she can walk. She can ride a bike twice as fast as she can run. If Emily can ride her bike a quarter mile in one minute, how long would it take her to swim a quarter mile?

NEW CONCEPT

We remember that there are two forms for writing money amounts. In one form the unit is cents. To write cents, we use a cent sign (¢) and do not use a decimal point. When we write $0.25

we mean “twenty-five hundredths of a dollar,” which is a fraction of a dollar equal to 25 cents.

A penny is 1 cent.

A penny is also \(\frac{1}{100} \) of a dollar.

\[1¢ = \$0.01 \]

Sometimes we see the notations for money used incorrectly.
Lesson 99

Example
Something is wrong with this sign. What should be changed to correct the sign?

Solution
The notation .50¢ is incorrect. We can use a cent sign (¢) and a whole number to tell how many cents. Or we can use a dollar sign and a decimal point to write the fractional part of a dollar.

50¢ is correct $0.50 is also correct

LESSON PRACTICE

Practice set
At a vegetable stand Martin saw this incorrect sign. Draw two different signs that show how to correct the error.

MIXED PRACTICE

Problem set
1. Susan B. Anthony divided her 53 suffragettes into groups of 6.
 (a) How many groups of 6 could she make?
 (b) How many suffragettes were left over?
 (c) If the remaining suffragettes formed a group, how many groups were there in all?

2. Abraham Lincoln was born in 1809 and died in 1865. About how many years did he live?

3. The parking lot charges $1.25 for the first hour. It charges 75¢ for each additional hour. How much does it cost to park a car in the lot for 3 hours?

4. Two thirds of the team’s 45 points were scored in the second half. How many points did the team score in the second half? Draw a picture to illustrate the problem.
5. Something is wrong with this sign. Draw two different signs that show how to correct the error.

6. What is the value of 3 ten-dollar bills, 4 one-dollar bills, 5 dimes, and 2 pennies?

7. Use words to write 6412.5.

8. Round 5139 to the nearest thousand. Round 6902 to the nearest thousand. Then add the rounded numbers.

9. James opened a 1-gallon bottle of milk and poured out 1 quart. How many quarts of milk were left in the bottle?

10. What percent of the milk in problem 9 was left in the bottle?

11. Estimate the product of 39 and 41. Then find the exact product.

12. Salma slowly gave the doorknob a quarter turn counterclockwise. How many degrees did she turn the doorknob?

13. Five full buses held 240 students. What was the average number of students per bus?

14. $68.57 + 36.49$
15. $100.00 - 5.43$
16. $52 - 17$

17. 12×12
18. 5.08×7
19. 50^2
20. $\sqrt{144} + 420$

21. $12.08 - (9.61 - 2.4)$
22. 49×51
23. 33×25
24. $\frac{848}{8}$
25. $\sqrt{6300}$
26. Draw and shade circles to show that $2 \frac{2}{3}$ equals $\frac{8}{3}$.

27. Draw a rectangle that is three inches long and one inch wide.

28. What is the perimeter and area of the rectangle you drew in problem 27?

29. This rectangular solid is made up of how many small cubes?

30. This pyramid has a square base. How many vertices does the pyramid have?
Recall from Lesson 98 that geometric shapes such as triangles, rectangles, and circles have two dimensions—length and width—but they do not have depth. These kinds of figures occupy area, but they do not take up space. We call shapes such as these plane figures because they are confined to a plane.

Shapes that take up space are geometric solids such as cubes, pyramids, and cones. Geometric solids have three dimensions: length, width, and depth. We sometimes simply call these shapes solids. Solids are not confined to a plane, so to draw them we try to create an optical illusion to suggest their shape.
In this lesson you will cut, fold, and glue (or tape) paper patterns to construct three-dimensional models of a cube, a pyramid, and a cone.

Before making the models, consider the shape of a cereal box. The shape is called a *rectangular solid* (or *rectangular prism*). Every panel (side) of a closed cereal box is a rectangle. If an empty cereal box or similar container is available, you may refer to it to answer the following questions:

1. A closed cereal box has how many panels?
2. What words could we use to refer to these panels?
3. Without a mirror, what is the largest number of panels that can be seen at one time?
4. Two panels meet at a fold, or seam, in the cardboard. Each fold is an edge. A closed cereal box has how many edges?
5. Three edges meet at each corner of the box. A closed cereal box has how many corners (vertices)?

If we tape an empty cereal box closed and cut it along seven edges, we can “flatten out” the container, as shown below.

![Diagram of a flattened cereal box]

We can see the six rectangles that formed the panels of the closed box. We will use “maps” like this one to construct the models of a cube, a pyramid, and a cone.

Activity: Constructing Models of Geometric Solids

Materials needed:

- copies of Activity Masters 18, 19, and 20 (masters available in *Saxon Math 5/4 Assessments and Classroom Masters*)
- scissors
- glue or tape

Cut out the patterns for the cube, pyramid, and cone. The shaded parts of each pattern are tabs to help hold the figures together. Fold the paper along the edges before you glue or tape the seams. You might want to work with a partner as you construct the models.
Problem set

1. One hundred fifty feet equals how many yards?

2. Tammy gave the clerk $6 to pay for a book. She received 64¢ in change. Tax was 38¢. What was the price of the book?

3. Sergio is 2 years older than Rebecca. Rebecca is twice as old as Dina. Sergio is 12 years old. How old is Dina? *(Hint: First find Rebecca’s age.)*

4. Write each decimal number as a mixed number:
 (a) 3.295
 (b) 32.9
 (c) 3.09

5. Three fourths of the 84 contestants guessed incorrectly. How many contestants guessed incorrectly? Draw a picture to illustrate the problem.

6. What percent of the contestants in problem 5 guessed incorrectly?

7. (a) What is the diameter of this circle?
 (b) What is the radius of this circle?

 ![Circle Diagram](image)

8. Use words to write 8.75.

9. Estimate the product of 47 and 62. Then find the actual product.

10. The first five odd counting numbers are 1, 3, 5, 7, 9

 Find the mean and the median of these five numbers.

11. What geometric shape is a roll of paper towels?
12. Which of these polygons is a parallelogram?
 A. B. C. D.

13. $16.25 - ($6 - 50¢)

14. $16.25 - ($6 - 50¢)

15. 7.83×6

16. 54×1000

17. 45×45

18. 32×40

19. 46×44

20. $6 \overline{)3625}$

21. $5 \overline{)3000}$

22. $7 \overline{)987}$

23. $\sqrt[3]{1025}$

24. $\frac{13.76}{8}$

25. $\frac{234}{4}$

26. Draw and shade a circle to show that $\frac{5}{6}$ equals 1.

27. The perimeter of this square is 40 cm. What is the area of this square? (Hint: First find the length of each side.)

28. Draw a triangle that is similar to this isosceles triangle. Then draw its line of symmetry.

29. (a) Compare: 0.25 \bigodot 0.250
 (b) Compare: $0.25 \bigodot 0.25¢$

30. One of these maps could be cut out and folded to form a cube. The other will not form a cube. Which map, A or B, will form a cube?
 A. B.
Focus on

Probability

Many board games involve an element of chance. This means that when we spin a spinner, roll dice, or draw a card from a shuffled deck, for example, we cannot know the outcome (result) of the event ahead of time. However, we can often find how likely a particular outcome is. The degree of likelihood of an outcome is called its probability.

Here we show a spinner. The face is divided into six equal parts called sectors. Each sector is $\frac{1}{6}$ of the face of the spinner. Assuming the spinner is balanced and fair, then a spin of the arrow can end up with the arrow pointing in any direction. The letter that names the sector in which the arrow lands is the outcome of the spin. For the questions that follow, ignore the possibility that the arrow may stop on a line.

1. If the arrow is spun once, what outcomes are possible?

2. On which letter is the arrow most likely to stop and why?

3. List the possible outcomes of a spin in order from least likely to most likely.

4. Which outcome of a spin is twice as likely as the outcome C?

5. If the arrow is spun many times, then about half the outcomes are likely to be which of the following?
 A. outcome A B. outcome B C. outcome C

6. If the arrow is spun many times, then what fraction of the spins are likely to stop in sector C?
 A. $\frac{1}{6}$ B. $\frac{1}{3}$ C. $\frac{1}{2}$ D. $\frac{5}{6}$

7. In 60 spins, about how many times should we expect it to stop in sector C?
 A. about 6 times B. about 10 times
 C. about 20 times D. about 30 times
The probability of an outcome can be expressed as a number ranging from 0 to 1. An outcome that cannot happen has a probability of 0. An outcome that is certain to happen has a probability of 1. An outcome that could happen but is not certain to happen is expressed as a fraction between 0 and 1. Below we again show our spinner.

8. What is the probability the arrow will stop in sector D? Why?

9. What is the probability that the outcome will be one of the first three letters of the alphabet? Why?

10. What is the probability the arrow will stop in sector C?

Here we show a standard die (dot cube).

11. What numbers are represented by the dots on the faces of a die?

12. If a die is rolled once, which number is most likely to end up on top and why?

13. If a die is rolled many times, about how often would we expect to roll a number greater than 3?
 A. less than half the time
 B. about half the time
 C. more than half the time

14. If a die is rolled once, what is the probability of rolling a 7?

15. With one roll of a die, what is the probability of rolling a 1?

16. How would we describe the likelihood of rolling a 6 with one roll of a die?
 A. very likely
 B. just as likely as not
 C. unlikely
The **chance** of an event is sometimes expressed as a percent from 0% to 100%. For example, if a meteorologist forecasts that the chance of rain is 20%, then the meteorologist is stating that it might rain, but that it is more likely not to rain. A forecast of 100% chance of rain means that the meteorologist believes it is certain to rain.

17. The weather forecast stated that the chance of rain is 40%. According to the forecast, is it more likely to rain or not to rain?

18. The meteorologist said that the chance of rain is 80%. This means that the chance it will not rain is what percent?

Activity: Probability Experiments

Materials needed:

- dice (at least 1 die for each pair of students)
- Activity Master 21 (at least 1 copy for each pair of students; masters available in *Saxon Math 5/4 Assessments and Classroom Masters*)

Experiment 1: Work with a partner for this experiment. In this experiment, you and your partner will roll one die 36 times and tally the number of times each face of the die turns up. You will record the results in the Experiment 1 table on Activity Master 21. (A copy of the table is shown below.) Before starting the experiment, predict the number of times each outcome will occur during the experiment. Write your predictions in the column labeled “Prediction.”

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Prediction</th>
<th>Tally</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now begin rolling the die. For each roll, make a tally mark in the appropriate box in the “Tally” column. When all groups
have finished, report your results to the class. As a class, total the groups’ tallies for each outcome, and write these totals in the boxes under “Total Frequency.”

19. What conclusions can you draw from the results of Experiment 1?

Experiment 2: In this experiment you and your group will roll a pair of dice 36 times and tally the outcomes. For each roll the outcome will be the sum of the two numbers that end up on top. You will record your results in the Experiment 2 table on Activity Master 21.

Form groups so that each group can have two dice. Before starting the experiment, predict as a group the number of times each outcome will occur during the experiment. Write your predictions in the column labeled “Prediction.”

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Prediction</th>
<th>Tally</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now begin rolling the dice. For each roll of a pair of dice, make a tally mark in the appropriate box. When all groups have finished, report your results to the class. As a class, total the groups’ tallies for each outcome, and record these totals in the “Total Frequency” column.

20. Which outcome(s) occurred most frequently? Why?

21. Which outcome(s) occurred least frequently? Why?

22. What conclusions can you draw from the results of Experiment 2?
WARM-UP

Facts Practice: 90 Division Facts (Test J)

Mental Math:
Thinking of quarters can make mentally adding and subtracting numbers ending in 25, 50, and 75 easier:

a. $350 + 175$
 b. $325 - 150$
 c. $1.75 + 1.25$

Review:

d. 50×66
 e. $10.00 - 1.95$
 f. $36 - 18$

Roman numerals:

g. Write 36 in Roman numerals.
 h. Compare: 29 ○ XXXI

Problem Solving:

Recall that 52 weeks is 364 days, that a common year is 365 days, and that a leap year is 366 days. If we know on which day of the week a year begins, what rule can we use to tell us the day of the week the year will end? (You will find two rules, one for common years and one for leap years.)

NEW CONCEPTS

Tables
We have studied graphs that present number information in picture form. Another way of presenting number information is in a table.

Example 1
Use the information in this table to answer the questions that follow:

<table>
<thead>
<tr>
<th>Mountain</th>
<th>Feet</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everest</td>
<td>29,035</td>
<td>8850</td>
</tr>
<tr>
<td>McKinley</td>
<td>20,320</td>
<td>6194</td>
</tr>
<tr>
<td>Kilimanjaro</td>
<td>19,340</td>
<td>5895</td>
</tr>
<tr>
<td>Matterhorn</td>
<td>14,691</td>
<td>4478</td>
</tr>
<tr>
<td>Pikes Peak</td>
<td>14,110</td>
<td>4301</td>
</tr>
<tr>
<td>Fuji</td>
<td>12,388</td>
<td>3776</td>
</tr>
</tbody>
</table>

(a) The Matterhorn is how many meters taller than Pikes Peak?
(b) Mount McKinley is how many feet taller than Mount Kilimanjaro?
Solution We compare the heights by subtracting.

(a) We use the numbers from the meters column.

\[
\begin{array}{c|c}
\text{Matterhorn} & 4478 \text{ m} \\
\text{Pikes Peak} & -4301 \text{ m} \\
\hline
\text{177 m}
\end{array}
\]

(b) We use the numbers from the feet column.

\[
\begin{array}{c|c}
\text{McKinley} & 20,320 \text{ ft} \\
\text{Kilimanjaro} & -19,340 \text{ ft} \\
\hline
\text{980 ft}
\end{array}
\]

Schedules A schedule is a list of events organized by the times at which they are planned to occur.

Example 2 Michael follows this schedule on school days:

<table>
<thead>
<tr>
<th>School-Day Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:30 a.m. Wake up, dress, eat breakfast</td>
</tr>
<tr>
<td>7:30 a.m. Leave for school</td>
</tr>
<tr>
<td>8:00 a.m. School starts</td>
</tr>
<tr>
<td>12:00 p.m. Eat lunch</td>
</tr>
<tr>
<td>2:45 p.m. School ends, walk home</td>
</tr>
<tr>
<td>3:15 p.m. Eat snack</td>
</tr>
<tr>
<td>3:30 p.m. Start homework</td>
</tr>
<tr>
<td>5:00 p.m. Play</td>
</tr>
<tr>
<td>6:00 p.m. Eat dinner</td>
</tr>
<tr>
<td>7:00 p.m. Watch TV</td>
</tr>
<tr>
<td>8:00 p.m. Read</td>
</tr>
<tr>
<td>8:30 p.m. Shower</td>
</tr>
<tr>
<td>9:00 p.m. Go to bed</td>
</tr>
</tbody>
</table>

If lunch and recess together last 45 minutes, then how many hours does Michael spend in class?

Solution School starts at 8:00 a.m. and ends at 2:45 p.m., which is a span of 6 hours and 45 minutes. Since 45 minutes of school time is spent on lunch and recess, the time spent in class is 6 hours.

LESSON PRACTICE

Practice set Refer to the table and the schedule in this lesson to answer problems a–c.

a. Mount Kilimanjaro is how many meters taller than Mount Fuji?

b. Mount Everest is how many feet taller than the Matterhorn?

c. How much sleep does Michael get on a school night if he follows his schedule?
Problem set Use the information in this table to answer problems 1–3.

<table>
<thead>
<tr>
<th>City</th>
<th>Rainfall in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston</td>
<td>43</td>
</tr>
<tr>
<td>Chicago</td>
<td>36</td>
</tr>
<tr>
<td>Denver</td>
<td>16</td>
</tr>
<tr>
<td>Houston</td>
<td>48</td>
</tr>
<tr>
<td>San Francisco</td>
<td>20</td>
</tr>
</tbody>
</table>

1. Which cities listed in the table average less than 2 feet of rain per year? *(Inv. 2, 101)*
2. One year Houston received 62 inches of rain. This was how much more than its yearly average? *(101)*
3. Copy and complete this bar graph to show the information in the rainfall table: *(Inv. 6, 101)*

4. Five sixths of the 288 marchers were out of step. How many marchers were out of step? Draw a picture to illustrate the problem. *(95)*

5. Something is wrong with this sign. Draw two different signs that show how to correct the error. *(99)*

6. What is the radius of this circle in millimeters? *(21, 69)*

7. The chance of rain is 60%. Is it more likely that it will rain or that it will not rain? *(Inv. 10)*
8. Estimate the product of 88 and 22. Then find the actual product.

9. Apples were priced at 53¢ per pound. What was the cost of 5 pounds of apples?

10. Write the number 3708 in expanded form. Then use words to write the number.

11. The top of a doorway is about two meters from the floor. Two meters is how many centimeters?

12. Four pounds of pears cost $1.20. What did 1 pound of pears cost? What did 6 pounds of pears cost?

13. Mike drove his car 150 miles in 3 hours. What was his average speed in miles per hour?

14. $46.00

15. 10,165

16. $0.63

17. $0.38

18. $0.06

19. $30.00

20. $5.00

21. $1.20

22. 344

23. 37

24. 56

25. $5.97

26. 10.000 – (4.468 – 2.3)

27. Find the mean, median, mode, and range of this set of numbers:

3, 1, 4, 1, 6

28. Draw and shade circles to show that 2 equals $\frac{4}{2}$.

29. Draw a square with sides 4 cm long.

30. Find the perimeter and the area of the square you drew in problem 29.
WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Think of quarters as you add or subtract:

a. 325 + 75
b. 425 − 175
c. $3.75 + $1.75

Review:

d. 4 × 18
e. $3.65 + $1.98
f. 456 − 39

Roman numerals:

g. Write 24 in Roman numerals.
h. Compare: XXXIX 〇 40

Problem Solving:

Amber said, “An inch is less than 10% of a foot.” Write a short paragraph explaining why you agree or disagree with Amber’s statement.

NEW CONCEPT

We have used decimal numbers to name lengths that include a fraction of a centimeter. For instance, the length of this segment can be written as 23 millimeters or 2.3 centimeters:

Likewise, on the following number line, the distance between every two whole numbers is divided into ten equal parts. So the arrow is pointing to the number three and one tenth. We can write three and one tenth as a mixed number or as a decimal.
If the distance between whole numbers on a number line is divided into 100 parts, then points between whole numbers may need to be written with two decimal places. The arrow below is pointing to three and twenty-five hundredths, which can be written as 3.25 or as $3 \frac{25}{100}$.

If you inspect a meterstick, you will see that it is divided into 100 centimeters. Each centimeter is $\frac{1}{100}$ of a meter. So a pencil that is 18 cm long is 0.18 m (eighteen hundredths of a meter) long.

Example 1 Santiago is 162 cm tall. What is Santiago’s height in meters?

Solution One hundred centimeters equals a meter. So Santiago’s height is one meter plus 62 centimeters. Since 62 centimeters is 62 hundredths of a meter, Santiago is 1.62 meters tall.

Example 2 Write the decimal number to which each arrow points:

(a) ![Arrow pointing to a number between 8 and 9]

(b) ![Arrow pointing to a number between 7 and 8]

Solution

(a) 9.6

(b) 7.52

Example 3 (a) Round 9.6 to the nearest whole number.

(b) Round 7.52 to the nearest tenth.

Solution

(a) The decimal number 9.6 is between the whole numbers 9 and 10. Halfway from 9 to 10 is 9.5, and 9.6 is greater than 9.5. So 9.6 rounds to 10.

(b) Rounding 7.52 to the nearest tenth is like rounding 7.52 to the nearest ten cents. Just as 7.52 is between 7.50 and 7.60, so 7.52 is between 7.5 and 7.6. It is closer to 7.5, as we can see on the number line above.
Activity: Measuring Objects with a Meterstick

Materials needed:
- meterstick
- pencil and paper

Using a meterstick, measure the heights or widths of various objects in the classroom, such as doors, tables, desks, or books. Measure to the nearest centimeter and record each measurement twice, once in centimeters and once in meters. Here is an example:

height of door 203 cm 2.03 m

LESSON PRACTICE

Practice set

a. Julia jumped over a bar that was 167 cm high. How many meters high was the bar?

Write the decimal number to which each arrow points:

b.

c.

d.

h. Round 6.8 to the nearest whole number.

i. Round 4.44 to the nearest whole number.

j. Round 4.44 to the nearest tenth.

MIXED PRACTICE

Problem set

1. All 110 books must be packed in boxes. Each box will hold 8 books.
 (a) How many boxes can be filled?
 (b) How many boxes are needed to hold all the books?

2. What number is five more than the product of six and seven?
3. Gabriel gave the man $7 to pay for the tape. He got back a quarter and two dimes. Tax was 42¢. What was the price of the tape without tax?

4. Four fifths of the 600 gymnasts did back handsprings. How many gymnasts did back handsprings? Draw a picture to illustrate the problem.

5. What percent of the gymnasts in problem 4 did not do back handsprings?

6. What is the value of 2 hundred-dollar bills, 5 ten-dollar bills, 4 one-dollar bills, 3 dimes, and 1 penny?

7. (a) Find the length of this line segment in millimeters.

 (b) Find the length of the segment in centimeters. Write the answer as a decimal number.

8. Use words to write 12.67.

9. (a) Round 3834 to the nearest thousand.

 (b) Round 38.34 to the nearest whole number.

10. The diameter of a circle is 1 meter. What is the radius of the circle in centimeters?

11. Find the sum of two hundred eighty-six thousand, five hundred fourteen and one hundred thirty-seven thousand, two.

12. Seven whirligigs cost $56. What is the cost of one whirligig? What would 12 whirligigs cost?

13. There are 36 children in one line and 24 children in the other line. What is the average number of children per line?
14. If the arrow is spun once, what is the probability it will stop in sector C?

15. $7.486 - (6.47 + 0.5)$
16. 40×50

17. 41×49
18. $2^3 \times 5 \times \sqrt{49}$

19. $\frac{32}{17}$
20. $\frac{38}{40}$

21. $7 + 4 + 6 + 8 + 5 + 2 + 7 + 3 + K = 47$

22. $8 \overline{3616}$
23. $4 \overline{2482}$
24. $7 \overline{3516}$

25. $4.38 \div 6$
26. $7162 \div 9$
27. $\frac{1414}{2}$

28. Draw and shade circles to show that 2 equals $\frac{8}{4}$.

29. The basketball player was 211 centimeters tall. Write the height of the basketball player in meters.

30. How many square yards of carpeting are needed to cover the floor of a classroom that is 15 yards long and 10 yards wide?
Fractions Equal to 1 • Fractions Equal to $\frac{1}{2}$

NEW CONCEPTS

Fractions equal to 1 Each circle below is divided into parts. Together, the parts of each circle make up a whole. We see that 2 halves is the same as 1 whole. We also see that 3 thirds, 4 fourths, and 5 fifths are ways to say 1 whole. If the numerator (top number) and the denominator (bottom number) of a fraction are the same, the fraction equals 1.

Example 1 Which of these fractions equals 1?

A. $\frac{1}{6}$
B. $\frac{6}{6}$
C. $\frac{7}{6}$

Solution A fraction equals 1 if its numerator and denominator are equal. The fraction equal to 1 is B. $\frac{6}{6}$.

Facts Practice: 100 Addition Facts (Test A)
Mental Math:
Think of quarters as you add or subtract:

a. $750 + 250$
b. $450 - 175$
c. $6.75 + 2.50$

Review:

d. 50×42
e. $1.00 - 0.62$
f. $463 - 45$

Roman numerals:

g. Write 29 in Roman numerals.
h. Compare: 18 \bigcirc XVIII

Problem Solving:
Which date occurs only once every four years?
Example 2 Write a fraction equal to 1 that has a denominator of 7.

Solution A fraction equals 1 if its numerator and denominator are the same. So if the denominator is 7, the numerator must also be 7. We write $\frac{7}{7}$.

Fractions equal to $\frac{1}{2}$ If the numerator of a fraction is half the denominator, then the fraction equals $\frac{1}{2}$. Notice below that the top number of each fraction illustrated is half of the bottom number of the fraction.

Example 3 Which fraction equals $\frac{1}{2}$?

A. $\frac{3}{7}$ B. $\frac{4}{4}$ C. $\frac{5}{10}$ D. $\frac{5}{9}$

Solution Since 5 is half of 10, the fraction equal to $\frac{1}{2}$ is C. $\frac{5}{10}$.

Example 4 Compare: $\frac{3}{8} \bigcirc \frac{1}{2}$

Solution The fraction $\frac{1}{2}$ equals $\frac{4}{8}$. Since $\frac{3}{8}$ is less than $\frac{4}{8}$, we know that $\frac{3}{8}$ is less than $\frac{1}{2}$.

$$\frac{3}{8} < \frac{1}{2}$$

Example 5 Round $6\frac{7}{10}$ to the nearest whole number.

Solution Halfway between 6 and 7 is 6$\frac{1}{2}$. We know that $6\frac{7}{10}$ is greater than 6$\frac{1}{2}$ because $\frac{7}{10}$ is greater than $\frac{5}{10}$, which equals $\frac{1}{2}$.

So $6\frac{7}{10}$ rounds to 7.
LESSON PRACTICE

Practice set

a. Write a fraction equal to 1 and that has a denominator of 6.

b. Which of these fractions equals 1?

 A. \(\frac{9}{10} \)
 B. \(\frac{10}{10} \)
 C. \(\frac{11}{10} \)

What fraction name for 1 is shown by each picture?

c.

d.

e. Write a fraction equal to \(\frac{1}{2} \) with a denominator of 12.

f. Compare: \(\frac{9}{20} \bigcirc \frac{1}{2} \)

g. Round \(5\frac{3}{8} \) to the nearest whole number.

MIXED PRACTICE

Problem set

1. Find an even number between 79 and 89 that can be divided by 6 without a remainder.

2. How many minutes are in 3 hours?

3. Bill has $8. Mary has $2 less than Bill. How much money do they have altogether?

4. Write each fraction or mixed number as a decimal number:

 (a) \(\frac{3}{10} \)
 (b) \(4 \frac{99}{100} \)
 (c) \(12\frac{1}{1000} \)

5. Five eighths of the 40 students earned A’s on the test. How many students earned A’s on the test? Draw a picture to illustrate the problem.
6. (a) What is the diameter of this circle in centimeters?
 (b) What is the radius of this circle in centimeters?

7. The radius of a circle is what percent of the diameter?

8. Estimate the product of 49 and 68. Then find the actual product.

9. Jimbo found that 20 equal-sized blocks would fill 4 containers. How many blocks could he put in 1 container? How many blocks could he put in 20 containers?

10. In Row 1 there were 6 students, in Row 2 there were 4 students, in Row 3 there were 6 students, and in Row 4 there were 4 students. What was the average number of students per row?

11. Gretchen paid $20 for five identical bottles of fruit juice. She received $6 in change. What was the price of one bottle of juice?

12. Find the median, mode, and range of Irv’s test scores. (Since there is an even number of scores, the median is the average of the two middle scores.)

 100, 80, 90, 85, 100, 90, 100, 100

13. \(\frac{3.85}{7} \times \frac{14}{48} \)

14. \(\frac{15}{29} \times \frac{16}{(7)} \)

15. \(\frac{4.00}{5} \)

16. \(\frac{6}{5824} + \frac{317}{1} \)

17. \(60^2 \)

18. \(59 \times 61 \)

19. \(217 \)

20. \(20 \)

21. \(\sqrt[9]{37.53} \)

22. \(\sqrt[7]{4205} + \frac{N}{45} \)

23. \(7.500 - (3.250 - 0.125) \)
24. Draw and shade circles to show that $3\frac{3}{4}$ equals $\frac{15}{4}$.

25. If the perimeter of a square is 20 inches, what is the length of each side of the square? What is the area of the square?

26. Write a fraction equal to 1 and with a denominator of 8.

27. If two dice are rolled together, which outcome is more likely—dots totaling 12 or dots totaling 7? Explain your answer.

28. Songhi measured the paper in her notebook and found that it was 28 cm long. Write the length of her paper in meters.

29. Round $12\frac{5}{12}$ to the nearest whole number.

30. (a) What is the geometric name for the shape of a cereal box?

 (b) How many edges does this box have?
NEW CONCEPT

If the numerator of a fraction is equal to or greater than the denominator, the fraction is an improper fraction. All of these fractions are improper fractions:

\[
\frac{12}{4} \quad \frac{10}{3} \quad \frac{9}{4} \quad \frac{3}{2} \quad \frac{5}{5}
\]

To write an improper fraction as a whole or mixed number, we divide to find out how many wholes the improper fraction contains. If there is no remainder, we write the improper fraction as a whole number. If there is a remainder, the remainder becomes the numerator in a mixed number.

Example 1 Write \(\frac{13}{5}\) as a mixed number. Draw a picture to show that the improper fraction and mixed number are equal.
Solution To find the number of wholes, we divide.

\[
\begin{array}{c}
5 \longdiv{13} \\
\underline{10} \\
3 \quad \text{remainder of 3}
\end{array}
\]

This division tells us that \(\frac{13}{5}\) equals two wholes with three fifths left over. We write this as \(2\frac{3}{5}\). We can see that \(\frac{13}{5}\) equals \(2\frac{3}{5}\) if we draw a picture.

![Diagram of three wholes and three fifths]

\[
\frac{13}{5} = \frac{5}{5} + \frac{5}{5} + \frac{3}{5} = 2\frac{3}{5}
\]

Example 2 Write \(\frac{10}{3}\) as a mixed number. Then draw a picture to show that the improper fraction and mixed number are equal.

Solution First we divide.

\[
\begin{array}{c}
3 \longdiv{10} \\
\underline{9} \\
1
\end{array}
\]

From the division we see that there are three wholes. One third is left over. We write \(3\frac{1}{3}\). Then we draw a picture to show that \(\frac{10}{3}\) equals \(3\frac{1}{3}\).

![Diagram of three wholes and one third]

\[
\frac{10}{3} = 3\frac{1}{3}
\]

Example 3 Write \(\frac{12}{4}\) as a whole number. Then draw a picture to show that the improper fraction and whole number are equal.

Solution First we divide.

\[
\begin{array}{c}
4 \longdiv{12} \\
\underline{12} \\
0
\end{array}
\]

We have three wholes and no remainder. Our picture looks like this:

![Diagram of three wholes]

\[
\frac{12}{4} = 3
\]
LESSON PRACTICE

Practice set* Change each improper fraction to a whole number or to a mixed number. Then draw a picture to show that the improper fraction is equal to the number you wrote.

\[\begin{align*}
\text{a.} & \quad \frac{7}{2} \\
\text{b.} & \quad \frac{12}{3} \\
\text{c.} & \quad \frac{8}{3} \\
\text{d.} & \quad \frac{15}{5}
\end{align*} \]

MIXED PRACTICE

Problem set

1. If the perimeter of a square is 280 feet, how long is each side of the square?

2. There are 365 days in a common year. How many full weeks are there in 365 days?

3. Nia passed out cookies to her 6 friends. Each of her friends received 3 cookies. There were 2 cookies left for Nia. How many cookies did Nia have when she began?

4. Three fifths of the 60 kangaroos were less than 2 feet tall. How many kangaroos were less than 2 feet tall? Draw a picture to illustrate the problem.

5. (a) Find the length of this line segment in millimeters.
(b) Find the length of the line segment in centimeters. Write the answer as a decimal number.

<table>
<thead>
<tr>
<th>mm</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

6. What fraction name for 1 is shown by this circle?

7. (a) Round 7.86 to the nearest dollar.
(b) Round 7.86 to the nearest whole number.

8. Estimate the product of 87 and 71. Then find the actual product.
9. Change the improper fraction $\frac{5}{4}$ to a mixed number. Draw a picture to show that the improper fraction and the mixed number are equal.

10. The chance of winning the game was 10%. What was the chance of not winning?

11. The cook used 30 pounds of flour each day to make pancakes and bread. How many pounds of flour did the cook use in 73 days?

12. The cook found that 132 pounds of potatoes would last 6 days. On average, how many pounds of potatoes were used each day?

13. $6.52 + $12 + $1.74 + 26¢

14. 3.65 + 2.7 + 0.454 + 2.0

15. $80 - ($63.72 + $2)

16. 37,614 – 29,148

17. $9W = 9 \cdot 26$

18. 3^4

19. 24×1000

20. $79¢ \times 6$

21. $\frac{50 \times 50}{22. \frac{51 \times 49}{23. \frac{47 \times 63}{24. 4\overline{2304}}}$

25. $5\overline{4815}$

26. $6\overline{3629}$

27. $1435 \div \sqrt{49}$

28. Zack’s shoe is 25 cm long. His shoe is how many meters long?

29. Round $16\frac{5}{8}$ to the nearest whole number.

30. The sum of $3\frac{2}{3}$ and $4\frac{1}{2}$ is between which two numbers?
 A. 3 and 5 B. 6 and 7 C. 7 and 9 D. 9 and 10
LESSON 105
Dividing by 10

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Think of one cent more or less than quarters:

a. 126 + 375
b. 651 − 225
c. $6.51 + $2.75

Review:

d. 50 × 60
e. $20.00 − $16.25
f. 84 − 47

Roman numerals:

- g. Write 39 in Roman numerals.
- h. Compare: XIX ○ 20

Patterns:
This sequence has an alternating pattern. Copy this sequence on your paper, and continue the sequence to 18.

0, 5, 3, 8, 6, 11, 9, 14, ...

NEW CONCEPT

We have used a four-step procedure to divide by one-digit numbers. We will use the same four-step procedure to divide by two-digit numbers. In this lesson we will learn how to divide by 10.

Example

Divide: 10)432

Solution
Ten will not divide into 4 but will divide into 43 four times. In Step 1 we are careful to write the 4 above the 3 in 432.

- Step 1: We find 10)43 and write “4.”
- Step 2: We multiply 4 by 10 and write “40.”
- Step 3: We subtract 40 from 43 and write “3.”
- Step 4: We bring down the 2, making 32.
Lesson 105

REPEAT:

Step 1: We divide 32 by 10 and write “3.”

\[
\begin{array}{c}
43 \text{ R } 2 \\
\underline{10 \overline{32}}
\end{array}
\]

Step 2: We multiply 3 by 10 and write “30.”

\[
\begin{array}{c}
30 \\
32
\end{array}
\]

Step 3: We subtract 30 from 32 and write “2.”

\[
\begin{array}{c}
32 - 30 = 2
\end{array}
\]

Step 4: There is no number to bring down.

The answer is 43 with a remainder of 2.

Notice that the remainder is the last digit of the dividend. When dividing by 10, there will be no remainder if the last digit of the whole-number dividend is zero. Otherwise, the remainder will be the last digit of the dividend.

LESSON PRACTICE

Practice set Divide:

- a. \(10 \overline{73}\)
- b. \(10 \overline{342}\)
- c. \(10 \overline{243}\)
- d. \(10 \overline{720}\)
- e. \(10 \overline{561}\)
- f. \(10 \overline{380}\)
- g. Which of these numbers can be divided by 10 without a remainder?
 - A. 365
 - B. 472
 - C. 560
 - D. 307

MIXED PRACTICE

Problem set

1. How many 6¢ mints can be bought with 2 quarters?

2. Two quarters are what percent of a dollar?

3. Jason has $8. David has $2 more than Jason. How much money do they have altogether?

4. Three eighths of the 32 elves packed toys on the sleigh. How many elves packed toys on the sleigh? Draw a picture to illustrate the problem.
5. If one card is drawn from a standard deck of playing cards, is it more likely that the card will be a “number card” or a “face card”? Explain your answer.

6. Write a fraction equal to one and that has a denominator of 10.

7. Write 86.743 with words.

8. Estimate the difference of 496 subtracted from 604.

9. Change each improper fraction to a whole number or a mixed number:
 (a) $\frac{9}{5}$
 (b) $\frac{9}{3}$
 (c) $\frac{9}{2}$

10. Soon after James Marshall discovered gold at John Sutter’s mill in California on January 24, 1848, the “gold rush” began. If 2400 people came in 10 days, about how many came each day? About how many people came in 1 week?

11. Find the length of this segment to the nearest tenth of a centimeter. Write the length as a decimal number.

```
 cm 1 2 3 4 5
```

12. One miner bought 6 bags of flour at $4.20 per bag and 8 pounds of salt at 12¢ per pound. How much money did the miner spend?

13. (a) Which digit in 86.743 is in the tenths place?
 (b) Is 86.74 closer to 86.7 or 86.8?

15. $4.867 - (2.8 + 0.56)$

16. 30^2

17. 54×29

18. $10 \div 230$

19. $7 \div 2383$
20. $372 \div 10$
21. $5.76 \div 8$
22. 12

23. $351,426 + 449,576$
24. $50.00 - 49.49$
25. 12.49×8
26. $73 \times 62 + 15$

27. A field is 300 feet long and 200 feet wide. How many feet of fencing would be needed to go around the field?

Use this chart to answer problems 28–30:

<table>
<thead>
<tr>
<th>Mileage Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
LESSON
106
Evaluating Expressions

WARM-UP

Facts Practice: 100 Addition Facts (Test A)

Mental Math:
Find each fraction of 24:

a. \(\frac{1}{2} \) of 24

b. \(\frac{1}{3} \) of 24

c. \(\frac{1}{4} \) of 24

Review:

d. \(4 \times 18 \)

e. $3.75 + $4.51

f. 54 – 38

Roman numerals:

g. Write CX in our number system.

h. Write LXX in our number system.

Problem Solving:

Two cups make a pint. Two pints make a quart. Two quarts make a half gallon, and two half gallons make a gallon. A pint of water weighs about one pound. Find the approximate weight of a cup, a quart, a half gallon, and a gallon of water.

NEW CONCEPT

What is the value of the following expression?

\[N + 7 \]

The value of the expression depends on the value of \(N \). If we know a value for \(N \), then we can evaluate the expression by adding 7 to the value of \(N \).

Example

If \(R \) is 5, then what is the value of each of these expressions?

(a) \(R + 3 \)

(b) \(R - 3 \)

(c) \(3R \)

Solution

We are told that the value of \(R \) is 5. To find the value of each expression, we substitute 5 in place of \(R \) and perform the calculation.

(a) \(R + 3 \)

(b) \(R - 3 \)

(c) \(3R \)

\[5 + 3 = 8 \]

\[5 - 3 = 2 \]

\[3 \times 5 = 15 \]

†In Lessons 106–120, the Mental Math section “Roman numerals” reviews concepts from Appendix Topic C. Skip these Warm-up problems if you have not covered Appendix Topic C.
LESSON PRACTICE

Practice set

a. If M equals 12, then what is the value of $M - 10$?

b. Evaluate $A + B$ when $A = 9$ and $B = 15$.

c. What is the value of xy when x is 6 and y is 7?

d. What is the value of W^2 when W is 5?

e. If $A = LW$, then what is A when L is 8 and W is 4?

f. Evaluate $\frac{m}{n}$, using $m = 12$ and $n = 3$.

g. Find the value of \sqrt{t} when t is 16.

MIXED PRACTICE

Problem set

Use this information to answer problems 1–3:

Samantha has 6 cats. Each cat eats $\frac{1}{2}$ can of food each day. Cat food costs 47¢ per can.

1. How many cans of cat food are eaten each day?

2. How much does Samantha spend on cat food per day?

3. How much does Samantha spend on cat food in a week?

4. If the perimeter of a square classroom is 120 feet, then how long is each side of the classroom? What is the area of the classroom?

5. Math was the favorite class of five sevenths of the 28 students. Math was the favorite class of how many students? Draw a picture to illustrate the problem.

6. Something is wrong with this sign. Draw two different signs to show how to correct the error.

7. If the radius of a circle is $1\frac{1}{2}$ inches, then what is the diameter of the circle?

8. Use words to write 523.43.

9. Estimate the product of 61 and 397.
10. Change each improper fraction to a whole number or a mixed number:
 (a) \(\frac{10}{10} \)
 (b) \(\frac{10}{5} \)
 (c) \(\frac{10}{3} \)

11. Jewell went to the fair with $20. She paid $6.85 for a doll and $4.50 for lunch. Then she bought a soft drink for 75¢. How much money did she have left?

12. Mary Sue bought 2 dolls priced at $7.40 each. The tax was 98¢. She paid the clerk with a $20 bill. How much change should she get back?

13. The big truck that transported the Ferris wheel could go only 140 miles in 5 hours. What was the truck’s average speed in miles per hour?

14. Compare: \(\frac{49}{100} \bigcirc \frac{1}{2} \)

15. (a) Round $12.25 to the nearest dollar.
 (b) Round 12.25 to the nearest whole number.

16. (a) Which digit in 36.47 is in the tenths place?
 (b) Is 36.47 closer to 36.4 or to 36.5?

17. \(73.48 \)
 \(5.63 \)
 \(-29.87 \)
 \(+ 17.9 \)

18. \(65.00 \)
 \(-29.87 \)

19. \(24,375 \)
 \(-8,416 \)

20. \(3.68 \)
 \(\times 9 \)

21. \(89 \times 91 \)

22. \(3 \overline{763} \)

23. \(10 \overline{430} \)

24. \(6 \overline{57.24} \)

25. \(765 \div 9 \)

26. \(563 \div 10 \)

27. Evaluate \(n^2 \) for \(n = 90 \).

28. Find the value of \(\frac{m}{\sqrt{m}} \) when \(m \) is 36.

29. The sum of \(6\frac{3}{4} \) and \(5\frac{3}{5} \) is between which two numbers?
 A. 5 and 7
 B. 30 and 40
 C. 0 and 2
 D. 11 and 13

30. The African bush elephant is the heaviest land mammal on Earth. Even though it eats only twigs, leaves, fruit, and grass, an African bush elephant can weigh 7 tons. Seven tons is how many pounds?
Lesson 107

Adding and Subtracting Fractions with Common Denominators

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Find each fraction of 30:

a. \(\frac{1}{2} \) of 30
b. \(\frac{1}{3} \) of 30
c. \(\frac{1}{5} \) of 30

Review:

da. 50 \(\times \) 28
e. \$5.00 \(-\) \$2.75
f. 47 \(+\) 29

Roman numerals:

g. Write XC in our number system.
h. Write LXV in our number system.

Problem Solving:

In parts of the country where “daylight saving time” is observed, we follow the rule “spring forward; fall back.” This rule means we turn the clock forward one hour in the spring and back one hour in the fall. Officially, clocks are reset at 2 a.m. on a Sunday. How many hours long are each of those Sundays when the clocks are reset?

NEW CONCEPT

To add fractions, it helps to think of the denominators as objects, like apples. Just as 1 apple plus 1 apple equals 2 apples, 1 third plus 1 third equals 2 thirds.

When we add fractions, we add the numerators (top numbers). We do not add the denominators (bottom numbers).
Example 1 Add: \(\frac{3}{5} + \frac{1}{5} \)

Solution Three fifths plus one fifth is four fifths. \(\frac{3}{5} + \frac{1}{5} = \frac{4}{5} \)

We add only the top numbers.

Likewise, when we subtract fractions, we subtract only the numerators. The denominator does not change. For example, five sevenths minus two sevenths is three sevenths.

\[\frac{5}{7} - \frac{2}{7} = \frac{3}{7} \]

Example 2 Subtract: \(\frac{3}{5} - \frac{1}{5} \)

Solution We subtract only the numerators. Three fifths minus one fifth is two fifths. \(\frac{3}{5} - \frac{1}{5} = \frac{2}{5} \)

Recall that a mixed number is a whole number plus a fraction, such as \(2\frac{3}{5}\). To add mixed numbers, we first add the fraction parts. Then we add the whole-number parts.

Example 3 Add: \(2\frac{3}{5} + 3\frac{1}{5} \)

Solution It is helpful to write the numbers one above the other. First we add the fractions and get \(\frac{4}{5}\). Then we add the whole numbers and get 5. The sum of the mixed numbers is \(5\frac{4}{5}\).

Example 4 Subtract: \(\frac{5}{3} - \frac{1}{3} \)

Solution We subtract the second number from the first number. To do this, we write the first number above the second number. We subtract the fractions and get \(\frac{1}{3}\). Then we subtract the whole numbers and get 4. The difference is \(4\frac{1}{3}\).

Example 5 In the race Martin rode his bike \(7\frac{1}{2}\) miles and ran \(2\frac{1}{2}\) miles. Altogether, how far did Martin ride his bike and run?

Solution This is a story about combining. We add \(7\frac{1}{2}\) miles and \(2\frac{1}{2}\) miles. The two half miles combine to make a whole mile. The total distance is **10 miles**.

\[\frac{7\frac{1}{2}}{2} + \frac{2\frac{1}{2}}{2} = 10 \]
LESSON PRACTICE

Practice set* Find each sum or difference:

- a. \(\frac{1}{3} + \frac{1}{3} \)
- b. \(\frac{1}{4} + \frac{2}{4} \)
- c. \(\frac{3}{10} + \frac{4}{10} \)
- d. \(\frac{2}{3} - \frac{1}{3} \)
- e. \(\frac{3}{4} - \frac{2}{4} \)
- f. \(\frac{9}{10} - \frac{6}{10} \)
- g. \(2\frac{1}{4} + 4\frac{2}{4} \)
- h. \(\frac{5}{8} + 1\frac{2}{8} \)
- i. \(8 + 1\frac{2}{5} \)
- j. \(4\frac{3}{5} - 1\frac{1}{5} \)
- k. \(\frac{9}{4} - 4\frac{2}{4} \)
- l. \(12\frac{8}{9} - 3\frac{3}{9} \)

MIXED PRACTICE

Problem set

1. Wendy bought 5 tickets for $2.75 each. She paid for them with a $20 bill. How much money should she have gotten back?

2. If fifty cents is divided equally among 3 friends, there will be some cents left. How many cents will be left?

3. What is the difference when four hundred nine is subtracted from nine hundred four?

4. Two ninths of the 45 stamps were from Brazil. How many of the stamps were from Brazil? Draw a picture to illustrate the problem.

5. (a) Find the length of this line segment in millimeters.

(b) Find the length of the segment in centimeters.

6. The pizza was cut into 10 equal slices. The entire sliced pizza shows what fraction name for 1?

7. One slice of the pizza in problem 6 is what percent of the whole pizza?
8. If a number cube is tossed once, which of these is the most likely outcome?
 A. 1 B. 3
 C. a number greater than 1 D. a number less than 3

9. Round 5167 to the nearest thousand.

10. Change the improper fraction \(\frac{9}{4} \) to a mixed number.

11. Which of these fractions is not equal to 1?
 A. \(\frac{12}{12} \) B. \(\frac{11}{11} \) C. \(\frac{10}{10} \) D. \(\frac{10}{10} \)

12. In the summer of 1926 there were only 17 stores in the town. Today there are 8 times as many stores in the town. How many stores are in the town today?

13. The wagon train took 9 days to make the 243-mile journey. What was the average number of miles traveled per day?

14. On Saturday Jason watched television for 1\(\frac{1}{2} \) hours and played board games for 2\(\frac{1}{2} \) hours. Altogether, how much time did Jason spend watching television and playing board games?

15. Round \(8\frac{21}{100} \) to the nearest whole number.

16. \(36.31 - 7.4 \)

17. \(\frac{5}{8} + \frac{2}{8} \)

18. \(6 \)

19. \(\frac{9}{10} - \frac{2}{10} \)

20. \(\frac{3}{5} + \frac{1}{5} + \frac{3}{25} \)

21. \(27 \times 32 \)

22. \(62 \times 15 \)

23. \(7^2 \times \sqrt{49} \)

24. \(10)\underline{460} \)

25. \(9)\underline{27.36} \)

26. \(6)\underline{2316} \)

27. \(1543 \div 7 \)

28. \(532 \div 10 \)

29. \(\frac{256}{8} \)

30. How many square feet of shingles are needed to cover a roof that is 40 feet wide and 60 feet long?
LESSON

108 Formulas • Distributive Property

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Find each fraction of 36:

a. \(\frac{1}{2} \) of 36 b. \(\frac{1}{3} \) of 36 c. \(\frac{1}{4} \) of 36

Review:
d. \(36 \times 100 \) e. \$8.50 + \$3.75 f. \(83 - 68 \)

Roman numerals:
g. Write CL in our number system.
h. Write LXXVI in our number system.

Patterns:
In this sequence, each term is the sum of the two preceding terms.
Copy this sequence and find the next four terms.

1, 1, 2, 3, 5, 8, ___, ___, ___, ___,

NEW CONCEPTS

Formulas Recall that we find the area of a rectangle by multiplying its length by its width.

\[\text{Area} = \text{length} \times \text{width} \]

This expression is a formula for finding the area of any rectangle. Usually formulas are written so that a letter represents each measure. In the following formula, the letter \(A \) stands for the area of a rectangle, and the letters \(L \) and \(W \) stand for the length and width of the rectangle.

\[A = LW \]

To find the area of a triangle, we may use this formula:

\[A = \frac{bh}{2} \]

In this formula \(b \) means the length of the base, and \(h \) means the height.
Below we list several common formulas. In these formulas P stands for perimeter, and s represents the side length of a square.

<table>
<thead>
<tr>
<th>Some Common Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of a rectangle</td>
</tr>
<tr>
<td>Area of a triangle</td>
</tr>
<tr>
<td>Perimeter of a rectangle</td>
</tr>
<tr>
<td>Perimeter of a square</td>
</tr>
<tr>
<td>Area of a square</td>
</tr>
</tbody>
</table>

Example 1 Use a formula to find the area of a triangle with a base 6 inches long and a height of 4 inches.

Solution According to the formula for the area of a triangle, we multiply the base by the height and then divide by 2. We substitute 6 inches for the base (b) and 4 inches for the height (h).

$$A = \frac{6 \text{ in.} \times 4 \text{ in.}}{2}$$

Multiplying 6 inches by 4 inches, we get 24 square inches.

$$A = \frac{24 \text{ sq. in.}}{2}$$

Then, dividing 24 by 2, we find that the area of the triangle is **12 square inches**.

Distributive property There are two formulas for the perimeter of a rectangle. One of the formulas is

$$P = 2(L + W)$$

This formula tells us to add the length and width of a rectangle and then multiply by 2. Applying this formula to the rectangle below, we add 8 cm to 5 cm and get 13 cm. Then we double 13 cm and get 26 cm.
The other formula for the perimeter of a rectangle is

\[P = 2L + 2W \]

This formula tells us to double the length, double the width, and then add the results. Applying this formula to the same rectangle, we double 8 cm and get 16 cm. Then we double 5 cm and get 10 cm. Then we add 16 cm to 10 cm and get 26 cm.

We see that the result of our calculations is the same using either formula for the perimeter of a rectangle. The equality of these two formulas illustrates an important property of mathematics called the **distributive property of multiplication**.

\[2(L + W) = 2L + 2W \]

In the expression \(2(L + W)\), both \(L\) and \(W\) are multiplied by 2. That is, the multiplication by 2 is distributed over both \(L\) and \(W\).

\[2(L + W) \]

When we multiply 2 by \(L\), the product is 2\(L\).

When we multiply 2 by \(W\), the product is 2\(W\).

Example 2 Use the distributive property to multiply:

\[4(20 + 3) \]

Solution This problem is the same as \(4 \times 23\), except that 23 is written as \(20 + 3\). With parentheses we are used to adding 20 and 3 before multiplying. However, the distributive property allows us to multiply first and then add the products.

\[4(20 + 3) = 80 + 12 = 92 \]

LESSON PRACTICE

Practice set

a. Use the distributive property to multiply:

\[6(10 + 6) \]

b. Use the formula \(P = 2(L + W)\) to find the perimeter of a rectangle that is 15 cm long and 10 cm wide.

c. Use the formula \(A = s^2\) to find the area of a square with sides 20 feet long.
Problem set

1. Nelson bought 8 pounds of oranges. He gave the storekeeper a $5 bill and received $1.96 back in change. What did 1 pound of oranges cost? (*Hint: First find how much *all* the oranges cost.*)

2. Mark had a dozen cookies. He ate two cookies and then gave half of the rest to a friend. How many cookies did Mark have left?

3. What number is six less than the product of five and four?

4. Two thirds of the 12 guitar strings were out of tune. How many of the guitar strings were out of tune? Draw a picture to illustrate the problem.

5. What is the probability that a rolled dot cube will stop with exactly two dots on top?

6. Write a fraction equal to 1 and that has a denominator of 5.

7. Use words to write $397\frac{3}{4}$.

8. Estimate the sum of 4178 and 6899 by rounding both numbers to the nearest thousand before adding.

9. Change each improper fraction to a whole number or a mixed number:
 (a) $\frac{7}{3}$ (b) $\frac{8}{4}$ (c) $\frac{9}{5}$

10. The hiking club went on hikes of 8 miles, 15 miles, 11 miles, and 18 miles. What was the average length of the club’s hikes?

11. For the first 3 hours the hikers hiked at 3 miles per hour. For the next 2 hours they hiked at 4 miles per hour. If the total trip was 25 miles, how far did they still have to go?

12. What percent of a quart is a pint?

13. $41.6 + 13.17 + 9.2$

14. $26.47 - 8.7$

15. $6\frac{3}{8} + 4\frac{2}{8}$

16. $4\frac{7}{10} - 1\frac{6}{10}$
17. The ranch market sold 54 dozen eggs in the morning. How many eggs is that?

18. Two fifths of the students rode the bus, and one fifth traveled by car. What fraction of the students either rode the bus or traveled by car?

19. 0.48×5

20. 80^2

21. $\sqrt{25} \times \sqrt{25}$

22. $6.36 \div 4$

23. $\overline{10)520}$

24. $\frac{175}{5}$

25. What is the perimeter and area of this square?

26. We may write 48 as $40 + 8$. Use the distributive property to find $5(40 + 8)$.

27. The tabletop was 76 cm above the floor. The tabletop was how many meters above the floor?

28. This is a formula for the area of a parallelogram:

$$A = bh$$

The letter b stands for the length of the base, and h stands for the height. Calculate the area of a parallelogram with a base of 5 m and a height of 4 m.

29. There were $3\frac{4}{5}$ pies on the baker’s shelf. Then the baker removed $1\frac{3}{5}$ pies. How many pies remained on the shelf?

30. The mixed numbers $5\frac{3}{8}$ and $7\frac{4}{3}$ do not have common denominators, but we know their sum is between which two numbers?

A. 14 and 16
B. 12 and 14
C. 10 and 12
D. 5 and 8
LESSON 109
Equivalent Fractions

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:

Find each fraction of 40:

a. \(\frac{1}{2} \) of 40
b. \(\frac{1}{4} \) of 40
c. \(\frac{1}{10} \) of 40

Review:

d. 120 \(\times \) 20
e. \$10.00 – \$1.95
f. 145 + 65

Roman numerals:

g. Write CLV in our number system.
h. Write XL in our number system.

Problem Solving:

Jimmy was born on a Monday in April 1996. On what day of the week was his first birthday?

NEW CONCEPT

Equal portions of each circle below have been shaded. We see that different fractions are used to name the shaded portions.

\[
\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10}
\]

These fractions all name the same amount. Different fractions that name the same amount are called equivalent fractions.

Example 1

The rectangle on the left has three equal parts. We see that two parts are shaded. So two thirds of the figure is shaded.

\[
\frac{2}{3} = \frac{?}{6}
\]

The rectangle on the right has six equal parts. How many parts must be shaded so that the same fraction of this rectangle is shaded?
Solution We see that four parts out of six must be shaded. Thus, two thirds is the same as four sixths.

\[
\frac{2}{3} = \frac{4}{6}
\]

\[
\frac{2}{3} \text{ and } \frac{4}{6} \text{ are equivalent fractions.}
\]

Example 2 What equivalent fractions are shown at right?

Solution An equal portion of each rectangle is shaded. The rectangles show the following equivalence:

\[
\frac{2}{8} = \frac{1}{4}
\]

We remember that when we multiply a number by 1, the answer equals the number we multiplied.

\[
2 \times 1 = 2 \quad 2000 \times 1 = 2000 \quad \frac{1}{2} \times 1 = \frac{1}{2}
\]

We also remember that there are many ways to write “1.”

\[
1 = \frac{2}{2} = \frac{3}{3} = \frac{4}{4} = \frac{5}{5} = \frac{6}{6} = \ldots
\]

We can use these two facts to find equivalent fractions. If we multiply a fraction by a fraction name for 1, the product is an equivalent fraction.

\[
\frac{1}{2} \times \frac{1}{1} = \frac{2}{4} \quad (1 \times 2 = 2)
\]

\[
(2 \times 2 = 4)
\]

By multiplying \(\frac{1}{2}\) by \(\frac{2}{2}\), which is a fraction name for 1, we find that \(\frac{1}{2}\) equals \(\frac{2}{4}\). Notice that we multiply numerator by numerator and denominator by denominator. We can find other fractions equal to \(\frac{1}{2}\) by multiplying by other fraction names for 1:

\[
\frac{1}{2} \times \frac{3}{3} = \frac{3}{6} \quad \frac{1}{2} \times \frac{4}{4} = \frac{4}{8} \quad \frac{1}{2} \times \frac{5}{5} = \frac{5}{10}
\]
Example 3 Find four fractions equal to $\frac{1}{3}$ by multiplying $\frac{1}{3}$ by (a) $\frac{2}{2}$, (b) $\frac{3}{3}$, (c) $\frac{4}{4}$, and (d) $\frac{5}{5}$.

Solution
(a) $\frac{1}{3} \times \frac{2}{2} = \frac{2}{6}$
(b) $\frac{1}{3} \times \frac{3}{3} = \frac{3}{9}$
(c) $\frac{1}{3} \times \frac{4}{4} = \frac{4}{12}$
(d) $\frac{1}{3} \times \frac{5}{5} = \frac{5}{15}$

Each of our answers is a fraction equal to $\frac{1}{3}$.

LESSON PRACTICE

Practice set Name the equivalent fractions shown:

a.

b.

Draw pictures to show that the following pairs of fractions are equivalent:

(c) $\frac{2}{4} = \frac{1}{2}$
(d) $\frac{4}{6} = \frac{2}{3}$
(e) $\frac{2}{8} = \frac{1}{4}$

Find four equivalent fractions for each fraction below. To do this, multiply each fraction by $\frac{2}{2}$, $\frac{3}{3}$, $\frac{4}{4}$, and $\frac{5}{5}$.

f. $\frac{1}{4}$
g. $\frac{5}{6}$
h. $\frac{2}{5}$
i. $\frac{1}{10}$

MIXED PRACTICE

Problem set Use the information below to answer problems 1 and 2.

Mario kept a tally of the number of vehicles that drove by his house during 1 hour.

<table>
<thead>
<tr>
<th>Number of Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars</td>
</tr>
<tr>
<td>Trucks</td>
</tr>
<tr>
<td>Motorcycles</td>
</tr>
<tr>
<td>Bicycles</td>
</tr>
</tbody>
</table>

1. How many more cars than trucks drove by Mario’s house?
 (Inv. 7)

2. Altogether, how many vehicles drove by Mario’s house?
 (Inv. 7)

3. What number is six less than the sum of seven and eight?
 (94)
4. Beth read three tenths of 180 pages in one day. How many pages did she read in one day? Draw a picture to illustrate the problem.

5. (a) What is the diameter of this dime?
(b) What is the radius of the dime?

6. In problem 5 what is the diameter of the dime in centimeters?

7. The candy bar was broken into 4 equal pieces. The broken candy bar illustrates what fraction name for 1?

8. Estimate the product of 78 and 32. Then find the actual product.

9. Change the improper fraction \(\frac{5}{2} \) to a mixed number. Draw a picture that shows that the improper fraction and the mixed number are equal.

Use the information below to answer problems 10 and 11:

The camel walked 12 miles on the first day. On each of the next four days it walked 2 more miles than it had walked the day before.

10. Altogether, how far did the camel walk in the five days?

11. What was the average number of miles the camel walked per day?

12. Solve this problem by guessing and then checking your guess: There were red checkers and black checkers on the checkerboard. There were 8 more red checkers than black checkers. Altogether, there were 20 checkers. How many checkers were red, and how many were black?

13. Find three fractions equivalent to \(\frac{2}{3} \) by multiplying \(\frac{2}{3} \) by \(\frac{3}{2} \), \(\frac{10}{10} \), and \(\frac{10}{3} \).

14. Since 63 equals 60 + 3, we may find 5 \(\times \) 63 by finding 5(60 + 3). Use the distributive property to find 5(60 + 3).

15. Find \(ac \) when \(a \) is 18 and \(c \) is 22.
16. Evaluate \(b^2 \) for \(b = 20 \).

17. Find the median, mode, and range of this set of scores:

\[100, 100, 95, 90, 90, 80, 80, 80, 60 \]

18. If a quadrilateral has two pairs of parallel sides, then the quadrilateral is certain to be a

A. rectangle
B. parallelogram
C. trapezoid
D. square

19. \(24.34 - 8.5 \)

20. \(26.4 - 15.18 \)

21. \(4 \times 3 \times 2 \times 1 \)

22. \(26 \times 30 \)

23. \(\frac{8}{3}) \text{R}16.48 \)

24. \(\frac{6}{7} \text{R}3744 \)

25. \(\frac{5}{12} + \frac{6}{12} \)

26. \(\frac{8}{12} - \frac{3}{12} \)

27. How many square feet of paper are needed to cover a bulletin board that is 3 feet tall and 6 feet wide?

28. The bread recipe calls for \(7 \frac{1}{2} \) cups of flour to make 2 loaves of bread. The baker wants to make 4 loaves of bread. How many cups of flour does the baker need?

29. Which of the following is a cylinder?

A.
B.
C.

30. The flag of the United States has thirteen stripes. Six of the stripes are white, and the rest of the stripes are red.

(a) How many red stripes are on the American flag?

(b) What fraction of the stripes on the American flag are white?

(c) What fraction of the stripes on the American flag are red?
Lesson 110

Dividing by Multiples of 10

WARM-UP

Facts Practice: 100 Subtraction Facts (Test B)

Mental Math:
Find each fraction of 100:
 a. \(\frac{1}{2} \) of 100 b. \(\frac{1}{4} \) of 100 c. \(\frac{1}{10} \) of 100

Review:
 d. 5 \times 46 e. $4.37 + $2.98 f. 86 – 68

Roman numerals:
 g. Write MCX in our number system.
 h. Write XLI in our number system.

Problem Solving:
Using at least one of each coin from a penny through a half-dollar, which nine coins would be needed to make exactly 99¢?

NEW CONCEPT

In this lesson we will begin dividing by multiples of 10. Multiples of 10 are the numbers 10, 20, 30, 40, 50, 60, and so on. To help us divide by a two-digit number, we may think of dividing by the first digit only.

To help us divide this: \(20 \div 72 \)
we may think this: \(2 \div 7 \)

We use the easier division to estimate the answer to the more difficult division. Since there are three 2’s in 7, we estimate that there are also three 20’s in 72. Since we are dividing 72 by 20, we write the 3 above the 2 in 72.

\[
\begin{array}{c}
 \text{3} \\
 \overline{20)72} \\
 \end{array}
\]

This is correct.

The 3 above the 2 means there are three 20’s in 72.

\[
\begin{array}{c}
 \text{3} \\
 \overline{20)72} \\
 \end{array}
\]

This is not correct!

Do not write the 3 above the 7. This would mean there are three 20’s in 7, which is not true.

It is important to place the digits in the answer correctly!
Now we complete the multiplication and subtraction steps to find the remainder.

\[
\begin{array}{c|c|c}
3 & 12 & \text{We write the answer this way.} \\
20 & 72 & \\
60 & \\
12 & \\
\end{array}
\]

Example
Divide: \(30 \div 127\)

Solution
To help us divide, we mentally block out the last digit of each number. So we think “3\(\div \)12.” Since there are four 3’s in 12, we estimate that there are also four 30’s in 127. We write “4” above the 7 of 127. Next, we multiply 4 by 30 and write “120.” Then we subtract 120 from 127 and write “7.”

LESSON PRACTICE

Practice set
Divide:

a. \(30 \div 72\)
b. \(20 \div 87\)
c. \(40 \div 95\)

d. \(20 \div 127\)
e. \(40 \div 127\)
f. \(30 \div 217\)

MIXED PRACTICE

Problem set
1. Eighty students were divided among three classrooms as equally as possible. Write three numbers to show how many students were in each of the three classrooms.

2. When the sum of three and four is subtracted from the product of three and four, what is the difference?

3. Inma is twice as old as her sister and three years younger than her brother. Inma’s sister is six years old. How old is Inma’s brother? (Hint: First find Inma’s age.)

4. Four ninths of 513 fans cheered when the touchdown was scored. How many fans cheered? Draw a picture to illustrate the problem.
5. Something is wrong with this sign. Draw two different signs that show how to correct the error.

![sign](Cash for cans .85¢ per pound)

6. These circles show fractions equivalent to $\frac{1}{2}$. Name the fractions shown.

![circles](fractions)

7. The chance of winning the jackpot is 1%. Which is more likely, winning or not winning?

![circles](fractions)

8. Estimate the sum of 589 and 398.

![circles](fractions)

9. Change the improper fraction $\frac{5}{2}$ to a mixed number.

![circles](fractions)

10. Jim ran 7 miles in 42 minutes. What was the average number of minutes it took Jim to run one mile?

![circles](fractions)

11. Salamona bought 3 scarves priced at $2.75 each. Tax was 58¢. She paid with a $10 bill. How much change should Salamona have received?

![circles](fractions)

12. Two tickets for the play cost $26. At that rate, how much would twenty tickets cost?

![circles](fractions)

13. Dawn is 49$\frac{1}{2}$ inches tall. Tim is 47$\frac{1}{2}$ inches tall. Dawn is how many inches taller than Tim?

![circles](fractions)

14. 7.43 + 6.25 + 12.7

![circles](fractions)

15. 14.36 − 7.5

![circles](fractions)

16. 90 × 8000

![circles](fractions)

17. 8 × 73¢

![circles](fractions)

18. 7 × 6 × 5 × 0

![circles](fractions)

19. 15^2

![circles](fractions)

20. 60×5^2

![circles](fractions)

21. $\sqrt{49} \times \sqrt{49}$

![circles](fractions)

22. $\frac{5\frac{1}{3}}{3} + \frac{3\frac{1}{3}}{3}$

![circles](fractions)

23. $4\frac{4}{5} - 3\frac{3}{5}$

![circles](fractions)

24. $\frac{1240}{10}$

![circles](fractions)

25. $60\sqrt{240}$

![circles](fractions)
26. This square has a perimeter of 8 cm. Find the length of each side. Then find the area of the square.

27. This rectangular solid is made up of how many small cubes?

Refer to this bus schedule to answer problems 28–30.

<table>
<thead>
<tr>
<th>Route 346</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal</td>
</tr>
<tr>
<td>5th & Western</td>
</tr>
<tr>
<td>5th & Cypress</td>
</tr>
<tr>
<td>Cypress & Hill</td>
</tr>
<tr>
<td>Hill & Lincoln</td>
</tr>
<tr>
<td>Lincoln & 5th</td>
</tr>
</tbody>
</table>

28. Nikki catches the 6:50 morning bus at 5th and Western. When can she expect to arrive at Hill and Lincoln?

29. If the bus runs on schedule, how many minutes is her ride?

30. If Nikki misses the 6:50 a.m. bus, then when can she catch the next Route 346 bus at that corner?
Focus on Volume

Recall that shapes such as cubes, pyramids, and cones take up space. The amount of space a shape occupies is called its volume. We measure volume with cubic units like cubic centimeters, cubic inches, cubic feet, and cubic meters.

The model of the cube we constructed in Lesson 100 has a volume of one cubic inch.

Here is a model of a rectangular solid built with cubes that each have a volume of 1 cubic centimeter. To find the volume of the rectangular solid, we can count the number of cubic centimeters used to build it.

One way to count the small cubes is to count the cubes in one layer and then multiply that number by the number of layers. There are six cubes on the top layer, and there are two layers. So the volume of the rectangular solid is 12 cubic centimeters.

Count cubes to find the volume of each rectangular solid below. Notice the units used in each figure.

1. 2 ft 2 ft 2 ft

2. 3 cm 2 cm 4 cm 2 cm
Another way to calculate the volume of a rectangular solid is to multiply the length, the width, and the height (depth) of the solid. The product of the three measures is the volume of the rectangular solid in cubic units. Use this multiplication method to find the volume of each rectangular solid in problems 1–4.

Recall that 3 feet equals 1 yard and that 9 square feet make up 1 square yard. Use this information to help you solve problem 5.

5. The length, width, and height of this cube are each 1 yard. So the volume of the cube is 1 cubic yard. What is the volume of the cube in cubic feet?

6. One foot equals 12 inches. One square foot equals 144 square inches. The volume of this figure is 1 cubic foot. What is its volume in cubic inches?

7. One meter equals 100 centimeters. One square meter equals 10,000 square centimeters. A shape with a volume of 1 cubic meter has a volume of how many cubic centimeters?
Items that we see on store shelves are usually shipped to stores in trucks. The amount of merchandise a truck can carry depends upon the capacity of the truck’s trailer and the weight of the items being shipped.

Suppose the storage area of a delivery truck is shaped like a box that is 5 feet wide, 6 feet high, and 20 feet long on the inside.

8. What is the volume (capacity) of the storage area in cubic feet?

Now suppose the truck is to be loaded with boxes with the dimensions shown at right. The first boxes are stacked against the back wall (which is 5 feet wide and 6 feet high).

9. How many of these boxes can be stacked against the back wall? Draw a diagram.

10. If the same-size boxes continue to be stacked in the truck in the same manner, then how many boxes will fit in the truck? Explain your answer.

Activity: Calculating Volume

As a class, calculate the volume of your classroom. First approximate the volume in cubic meters by finding the number of boxes one meter on each edge that could be packed into the room. (Assume all cabinets and other furniture pieces are moved out of the room.)

11. What needs to be measured before the calculation can be performed? What units should be used?

12. What is the volume of your classroom in cubic meters? (Round down the measurements used for the calculation to the nearest meter.)
Perform a second calculation for the volume of the classroom, this time in cubic feet.

13. Record the length, width, and height of the room in feet. (Round down to the nearest foot.)

14. What is the volume of your classroom in cubic feet?

A classroom with 30 desks may seem full. However, many more than 30 desks can fit into most classrooms. Suppose student desks were shipped in boxes 3 feet long, 2 feet wide, and 3 feet tall.

15. How many boxes of this size could be stacked against one wall of your classroom? Draw a diagram.

16. How many such stacks could fit in the classroom?

17. Altogether, how many boxed desks could fill your classroom?
Lesson 111

Estimating Area

WARM-UP

Facts Practice: 64 Multiplication Facts (Test G)

Mental Math:
Find each fraction of 60:
- a. \(\frac{1}{3} \) of 60
- b. \(\frac{2}{3} \) of 60
- c. \(\frac{3}{3} \) of 60

Review:
- d. \(50 \times 46 \)
- e. \($6.59 + $2.95 \)
- f. \(62 - 25 \)

Roman numerals:
- g. Write MXC in our number system.
- h. Compare: XLVI \(\bigcirc \) 45

Problem Solving:
Marco paid a dollar for an item that cost 54¢. He received four coins in change. What four coins should he have received?

NEW CONCEPT

To estimate the areas of shapes, we can use a grid. Below we show a triangle drawn on 1-inch grid paper. We will describe two strategies that can be used to estimate the area of the triangle.

First strategy:
Look within the outline of the figure. Count all the entire squares. Then estimate the number of entire squares that could be formed with the remaining partial squares.
Using this strategy, we count F as an entire square. C and G could fit together like puzzle pieces to make another square. D and B could make a third square. A and E could make a fourth square. We estimate that the area of the triangle is about 4 square inches.

Second strategy:

Look within the outline of the figure. Count all the entire squares as in the first strategy. Then count all the squares that seem to have at least half their area within the outline of the figure. Do not count the squares that have less than half their area within the figure.

Using this strategy, we again count F as an entire square. Then we count E, B, and G because at least half the area of each square is within the outline of the triangle. We do not count A, C, or D. Using this strategy, we again estimate the area of the triangle to be about 4 square inches.

Both strategies help us estimate areas. An estimate is an **approximation**. Estimates may differ slightly from person to person. The goal is to make each estimate carefully.

Activity: Estimating Area

Materials needed by each student:

- 1 copy of Activity Master 22 (masters available in *Saxon Math 5/4 Assessments and Classroom Masters*)
- pen or pencil

Outline your shoe or hand on the grid paper. Then use the two strategies described above to estimate the area of the shoe print or handprint.

LESSON PRACTICE

Practice set Estimate the area of each figure on these grids. Each small square represents one square inch.

a.

![Grid with shaded area](image)

b.

![Grid with handprint](image)
c. On the floor of the classroom, mark off 1 square foot, 1 square yard, and 1 square meter. Estimate the number of each kind of square it would take to cover the whole floor.

MIXED PRACTICE

Problem set

1. Three hundred seconds is how many minutes? (There are 60 seconds in each minute.)

2. David, Ann, and Cho were playing marbles. Ann had twice as many marbles as David had, and Cho had 5 more marbles than Ann had. David had 9 marbles. How many marbles did Cho have? (First find how many marbles Ann had.)

3. On each of 5 bookshelves there are 44 books. How many books are on all 5 bookshelves?

4. Nine tenths of the 30 students remembered their homework. How many students remembered their homework? Draw a picture to illustrate the problem.

5. What percent of the students in problem 4 did not remember their homework?

6. What fraction name for 1 has a denominator of 3?

7. What equivalent fractions are shown?

8. Draw a picture to show that \(\frac{6}{8} \) and \(\frac{3}{4} \) are equivalent fractions.

9. Below is a golf scorecard for 9 holes of golf. What was Michelle’s average score per hole?

<table>
<thead>
<tr>
<th>Putt 'N' Putt</th>
<th>PLAYER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michelle</td>
<td></td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>Mathea</td>
<td></td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>33</td>
</tr>
</tbody>
</table>

10. Sarah had to hurry. The laboratory had to be cleaned by 4:20 p.m. It was already 11:00 a.m. How much time did she have to clean the lab?
11. Sixty minutes is how many seconds?

12. The factors of 10 are 1, 2, 5, 10. The factors of 15 are 1, 3, 5, 15. Which number is the largest factor of both 10 and 15?

13. List the factors of 8. List the factors of 12. Which number is the largest factor of both 8 and 12?

14. \(4.3 + 12.6 + 3.75\)

15. \(364.1 - 16.41\)

16. \(\frac{5}{8} + \frac{2}{8}\)

17. \(\frac{3}{5} + \frac{1}{5}\)

18. \(\frac{9}{10} - \frac{2}{10}\)

19. \(60 \times 800\)

20. \(73 \times 48\)

21. \(9 \times 78\,\text{¢}\)

22. \(10^3\)

23. \$35.00 ÷ 4

24. \(\frac{4824}{8}\)

25. \(60 \overline{540}\)

26. \(10 \overline{463}\)

27. Estimate the area of this figure. Each small square represents one square inch.

28. Draw a rectangle that is 4 cm long and 1 cm wide. Then shade 25% of it.

29. Which arrow could be pointing to 38,274?

30. What is the volume of this rectangular solid?
Recall from Investigation 9 that when we reduce a fraction, we find an equivalent fraction written with smaller numbers. The picture below shows $\frac{4}{6}$ reduced to $\frac{2}{3}$.

Not all fractions can be reduced. Only a fraction whose numerator and denominator can be divided by the same number can be reduced. Since both the numerator and denominator of $\frac{4}{6}$ can be divided by 2, we can reduce the fraction $\frac{4}{6}$.

To reduce a fraction, we will use a fraction that is equal to 1. To reduce $\frac{4}{6}$, we will use the fraction $\frac{2}{2}$. We divide both 4 and 6 by 2, as shown below.

$$\frac{4}{6} \div \frac{2}{2} = \frac{4 \div 2}{6 \div 2} = \frac{2}{3}$$
Example Write the reduced form of each fraction:

(a) \(\frac{6}{8} \)
(b) \(\frac{3}{6} \)
(c) \(\frac{6}{7} \)

Solution (a) The numerator and denominator are 6 and 8. These numbers can be divided by 2. That means we can reduce the fraction by dividing 6 and 8 by 2.

\[
\frac{6}{8} \div \frac{2}{2} = \frac{6 \div 2}{8 \div 2} = \frac{3}{4}
\]

(b) The numerator and denominator are 3 and 6. These numbers can be divided by 3. So we reduce \(\frac{3}{6} \) by dividing both 3 and 6 by 3.

\[
\frac{3}{6} \div \frac{3}{3} = \frac{3 \div 3}{6 \div 3} = \frac{1}{2}
\]

(c) The numerator is 6 and the denominator is 7. The only number that divides 6 and 7 is 1. Dividing the terms of a fraction by 1 does not reduce the fraction.

\[
\frac{6}{7} \div \frac{1}{1} = \frac{6 \div 1}{7 \div 1} = \frac{6}{7}
\]

The fraction \(\frac{6}{7} \) cannot be reduced.
LESSON PRACTICE

Practice set* Write the reduced form of each fraction:

- a. \(\frac{2}{4} \)
- b. \(\frac{2}{6} \)
- c. \(\frac{3}{9} \)
- d. \(\frac{3}{8} \)
- e. \(\frac{2}{10} \)
- f. \(\frac{4}{10} \)
- g. \(\frac{9}{12} \)
- h. \(\frac{9}{10} \)

MIXED PRACTICE

Problem set Use this information to answer problems 1 and 2:

One fence board costs 90¢. It takes 10 boards to build 5 feet of fence.

1. How many boards are needed to build 50 feet of fence?
2. What will the boards in problem 1 cost?
3. Find the perimeter and area of this rectangle:

4. (a) Find the length of the line segment in millimeters.
 (b) Find the length of the segment in centimeters.

5. Five ninths of the 36 burros were gray. How many of the burros were gray? Draw a picture to illustrate the problem.

6. Change each improper fraction to a whole number or a mixed number:
 (a) \(\frac{15}{2} \)
 (b) \(\frac{15}{3} \)
 (c) \(\frac{15}{4} \)

7. What equivalent fractions are shown?

8. What percent of each rectangle in problem 7 is shaded?

9. Write the reduced form of each fraction:
 (a) \(\frac{3}{6} \)
 (b) \(\frac{4}{6} \)
 (c) \(\frac{5}{6} \)
10. In three tries Rodney bounced the soccer ball on his foot 23 times, 36 times, and 34 times. What was the average number of bounces in each try?

11. T-shirts were priced at $5 each. Yoshi had $27. He bought 5 T-shirts. Tax was $1.50. How much money did he have left?

12. \(\frac{3}{9} + \frac{4}{9}\)
13. \(\frac{1}{7} + \frac{2}{7} + \frac{3}{7}\)
14. \(37.2\)
15. \(\frac{11}{12} - \frac{10}{12}\)
16. \(\frac{8}{10} - \frac{5}{10}\)
17. \(\frac{48}{36}\)
18. \(\frac{72}{58}\)
19. \(\frac{4.08}{7}\)
20. \(25.42 + 24.8\)
21. \(36.2 - 4.27\)
22. \(90 \div 20\)
23. \(\frac{5}{8} - \frac{5}{8}\)
24. \(7 \div 2549\)
25. \(\frac{19.40}{5}\)
26. What number is halfway between 400,000 and 500,000?
27. What is the probability that a tossed coin will land heads up?
28. What is the geometric name for the shape of this box?
29. What is the volume of the box shown in problem 28?
30. Estimate the area of this shoe print. Each small square represents one square inch.
Lesson 113

Multiplying a Three-Digit Number by a Two-Digit Number

NEW CONCEPT

We have learned to multiply a two-digit number by another two-digit number. In this lesson we will learn to multiply a three-digit number by a two-digit number.

Example 1 Multiply: 364 × 24

Solution We write the three-digit number above the two-digit number so that the last digits in each number are lined up. We multiply 364 by 4. Next we multiply 364 by 2. Since this 2 is actually 20, we write the last digit of this product in the tens place, which is under the 2 in 24. Then we add and find that the product is 8736.
Example 2 Multiply: \[\$4.07 \times 38 \]

Solution We will ignore the dollar sign and decimal point until we are finished multiplying. First we multiply 407 by 8. Then we multiply 407 by 3 (which is actually 30), remembering to shift the digits of the product one place to the left. We add and find that the product is 15466. Now we write the dollar sign and insert the decimal point two places from the right.

\[
\begin{array}{c}
\text{407} \\
\times \ \ 38 \\
\hline
\text{3256} \\
\text{1221} \\
\hline
\text{15466}
\end{array}
\]

\$154.66

LESSON PRACTICE

Practice set

Multiply:

a. 235 \times 24

b. 14 \times 430

c. \$1.25 \times 24

d. 406 \times 32

e. \$6.20 \times 31

f. 562 \times 47

MIXED PRACTICE

Problem set

1. Carrie drove to visit her cousin, who lives 3000 miles away. If Carrie drove 638 miles the first day, 456 miles the second day, and 589 miles the third day, how much farther does she need to drive to get to her cousin’s house?

2. Find the perimeter and area of this square.

3. If the perimeter of a square is 2 meters, each side is how many centimeters long?

4. Gracie found 35 pinecones. Four sevenths of the pinecones still had seeds. How many of the pinecones still had seeds? Draw a picture to illustrate the problem.

5. Round 6843 to the nearest thousand.
6. Write the reduced form of each fraction:
 (a) \(\frac{4}{5} \)
 (b) \(\frac{5}{10} \)
 (c) \(\frac{4}{10} \)

7. Write 374.251 using words.

8. Draw a picture to show that \(\frac{1}{2} \) and \(\frac{4}{8} \) are equivalent fractions.

9. Write three fractions equivalent to \(\frac{1}{4} \) by multiplying \(\frac{1}{4} \) by \(\frac{2}{3} \), \(\frac{3}{2} \), and \(\frac{5}{5} \).

10. Daniel Boone furnished the settlers with 750 pounds of meat in 5 days. What was the average amount of meat he furnished per day?

11. The explorer Zebulon Pike estimated that the mountain’s height was eight thousand, seven hundred forty-two feet. His estimate was five thousand, three hundred sixty-eight feet less than the actual height. Today, we call this mountain Pikes Peak. What is the height of Pikes Peak?

12. \(\sqrt[12]{4837} \)
13. \(\sqrt{1372} \)
14. \(\sqrt[40]{960} \)
15. \(\sqrt[10]{1360} \)

16. 30.07 − 3.7
17. 46.0 − 12.46
18. 37.15
19. 3.20×46
20. 307 \times 25
21. \(\frac{8}{15} + \frac{6}{15} \)
22. \(\frac{4}{5} - 1\frac{3}{5} \)

23. Estimate the area of this triangle. Each small square represents one square centimeter.

24. Write the next three numbers in this counting sequence:
 ..., 10,000, 20,000, 30,000, ...
25. Which of these triangles appears to be an equilateral triangle?

A.
B.
C.
D.

26. To remove the lid from the peanut butter jar, Nadir turned the lid counterclockwise two full turns. Nadir turned the lid about how many degrees?

A. 360°
B. 180°
C. 720°
D. 90°

27. Which of these letters has no lines of symmetry?

M I C K E Y

28. Triangles ABC and DEF are congruent. Which transformations would move ΔABC to the position of ΔDEF?

29. If each side of an equilateral triangle is $2\frac{1}{4}$ inches long, what is the perimeter of the triangle?

30. What is the volume of this stack of cubes?
NEW CONCEPT

It is customary to write answers to math problems in the simplest form possible. If an answer contains a fraction, there are two procedures that we usually follow.

1. We write improper fractions as mixed numbers (or whole numbers).

2. We reduce fractions when possible.

Example 1 Add: \(\frac{2}{3} + \frac{2}{3}\)

Solution We add the fractions and get the sum \(\frac{4}{3}\). Notice that \(\frac{4}{3}\) is an improper fraction. We take the extra step of changing \(\frac{4}{3}\) to the mixed number \(1\frac{1}{3}\).
Example 2 Subtract: $\frac{3}{4} - \frac{1}{4}$

Solution We subtract and get the difference $\frac{2}{4}$.
Notice that $\frac{2}{4}$ can be reduced. We take the extra step of reducing $\frac{2}{4}$ to $\frac{1}{2}$.

\[
\frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}
\]

Example 3 Add: $3 \frac{1}{3} + 4 \frac{2}{3}$

Solution We add the mixed numbers and get the sum $7 \frac{3}{3}$. Notice that $\frac{3}{3}$ is an improper fraction equal to 1. So $7 \frac{3}{3} = 7 + 1$, which is 8.

\[
3 \frac{1}{3} + 4 \frac{2}{3} = 7 \frac{3}{3} = 8
\]

Example 4 Add: $5 \frac{3}{5} + 6 \frac{4}{5}$

Solution We add the mixed numbers and get $11 \frac{7}{5}$. Notice that $\frac{7}{5}$ is an improper fraction that can be changed to $1 \frac{2}{5}$. So $11 \frac{7}{5}$ equals $11 + 1 \frac{2}{5}$, which is $12 \frac{2}{5}$.

\[
5 \frac{3}{5} + 6 \frac{4}{5} = 11 \frac{7}{5} = 12 \frac{2}{5}
\]

Example 5 Subtract: $6 \frac{5}{8} - 1 \frac{3}{8}$

Solution We subtract and get $5 \frac{2}{8}$. Notice that $\frac{2}{8}$ can be reduced. We reduce $\frac{2}{8}$ to $\frac{1}{4}$ and get $5 \frac{1}{4}$ for our answer.

\[
6 \frac{5}{8} - 1 \frac{3}{8} = 5 \frac{2}{8} = 5 \frac{1}{4}
\]

LESSON PRACTICE

Practice set* Simplify the answer to each sum or difference:

a. $\frac{4}{5} + \frac{4}{5}$

b. $\frac{5}{6} - \frac{1}{6}$

c. $\frac{3}{3} + \frac{1}{3}$

d. $5 \frac{1}{4} + 6 \frac{3}{4}$

e. $7 \frac{7}{8} - 1 \frac{1}{8}$

f. $\frac{3}{5} + 1 \frac{3}{5}$
Lesson 114

MIXED PRACTICE

Problem set

1. Sharon made 70 photocopies. If she paid 6¢ per copy and the total tax was 25¢, how much change should she have gotten back from a $5 bill?

2. (a) What is the area of this square? (Inv. 2, Inv. 3)
(b) What is the perimeter of the square?

Use the information below to answer problems 3 and 4.

Walker has $9. David has twice as much money as Walker. Chris has $6 more than David.

3. How much money does Chris have?

4. What is the average amount of money each boy has?

5. There are 40 quarters in a roll of quarters. What is the value of 2 rolls of quarters?

6. Estimate the product of 29 and 312. Then find the actual product.

7. Write the reduced form of each fraction:
(a) \(\frac{2}{12} \) (b) \(\frac{6}{8} \) (c) \(\frac{3}{9} \)

8. Find a fraction equal to \(\frac{1}{3} \) by multiplying \(\frac{1}{3} \) by \(\frac{2}{2} \). Write that fraction; then add it to \(\frac{3}{6} \). What is the sum?

9. Draw diagrams to help solve this problem: The racehorses wore black, red, and green. Green finished one place ahead of black, and red was not last. Who finished first?

10. If an event cannot happen, its probability is 0. If an event is certain to happen, its probability is 1. What is the probability of rolling a 7 with one roll of a standard number cube?

11. Dresses were on sale for 50% off. If the regular price was $40, what was the sale price?
12. \(4.62 + 16.7 + 9.8\)

13. \(14.62 - (6.3 - 2.37)\)

14. \(\frac{3}{5} + \frac{4}{5}\)

15. \(16 + \frac{3\frac{3}{4}}{4}\)

16. \(1\frac{2}{3} + \frac{3\frac{1}{3}}{3}\)

17. \(\frac{2}{5} + \frac{3}{5}\)

18. \(\frac{7\frac{4}{5}}{5} + \frac{7\frac{1}{5}}{5}\)

19. \(6\frac{2}{3} + \frac{3\frac{2}{3}}{3}\)

20. \(372 \times 39\)

21. \(47 \times 142\)

22. \(360 \times \sqrt{36}\)

23. Estimate the area of this circle.
 Each small square represents one square centimeter.

24. \(\sqrt[8]{4834}\)

25. \(\frac{2840}{2^3}\)

26. \(30 \sqrt[6]{963}\)

27. Which arrow could be pointing to 427,063?

28. If the length of each side of a square is 1\(\frac{1}{4}\) inches, then what is the perimeter of the square?

29. What is the geometric shape of a volleyball?

30. Use the distributive property to multiply:

\[5(20 + 6)\]
Renaming Fractions

WARM-UP

Facts Practice: 100 Multiplication Facts (Test H)

Mental Math:

a. 25% of 36 b. 75% of 36 c. 100% of 36

Review:

d. 4 × 250 e. $5.00 − $4.25 f. 156 + 29

Roman numerals:

 g. Write MDL in our number system.

 h. Compare: 65 ○ LXIV

Patterns:

What are the next three terms in this sequence?

..., $1000.00, $100, $10, ___, ___, ___, ...

NEW CONCEPT

Remember that when we multiply a fraction by a fraction name for 1, the result is an equivalent fraction. For example, if we multiply $\frac{1}{2}$ by $\frac{2}{2}$, we get $\frac{2}{4}$. The fractions $\frac{1}{2}$ and $\frac{2}{4}$ are equivalent fractions because they have the same value.

$$\frac{1}{2} \times \frac{2}{2} = \frac{2}{4}$$

Sometimes we must choose a particular multiplier that is equal to 1.

Example 1 Find the equivalent fraction for $\frac{1}{4}$ whose denominator is 12.

Solution To change 4 to 12, we must multiply by 3. So we multiply $\frac{1}{4}$ by $\frac{3}{3}$.

$$\frac{1}{4} \times \frac{3}{3} = \frac{3}{12}$$

The fraction $\frac{1}{4}$ is equivalent to $\frac{3}{12}$.
Example 2 Complete the equivalent fraction: \(\frac{2}{3} = \frac{?}{15} \)

Solution The denominator changed from 3 to 15. Since the denominator was multiplied by 5, the correct multiplier is \(\frac{5}{5} \).

\[
\frac{2}{3} \times \frac{5}{5} = \frac{10}{15}
\]

Thus, the missing numerator of the equivalent fraction is 10.

LESSON PRACTICE

Practice set* Complete each equivalent fraction:

a. \(\frac{1}{4} = \frac{?}{12} \)
b. \(\frac{2}{3} = \frac{?}{12} \)
c. \(\frac{5}{6} = \frac{?}{12} \)
d. \(\frac{3}{5} = \frac{?}{10} \)
e. \(\frac{2}{3} = \frac{?}{9} \)
f. \(\frac{3}{4} = \frac{?}{8} \)

MIXED PRACTICE

Problem set 1. If a can of soup costs $1.50 and serves 3 people, how much would it cost to serve soup to 12 people?

2. (a) What is the perimeter of this rectangle?

(b) What is the area of the rectangle?

3. What number is eight less than the product of nine and ten?

4. The woodpecker found 3069 bugs in the tree and ate \(\frac{2}{3} \) of them. How many bugs were left in the tree? Draw a picture to illustrate the problem.

5. (a) Find the length of the line segment in centimeters.

(b) Find the length of the segment in millimeters.
6. Use words to write 356,420.

7. Which arrow could be pointing to 356,420?

8. Complete each equivalent fraction:
 \[(a) \frac{1}{2} = \frac{?}{6} \quad (b) \frac{1}{3} = \frac{?}{6} \quad (c) \frac{2}{3} = \frac{?}{6}\]

9. Write the reduced form of each fraction:
 \[(a) \frac{2}{6} \quad (b) \frac{6}{9} \quad (c) \frac{9}{16}\]

10. There were 40 workers on the job. Of those workers, 10 had worked overtime. What fraction of the workers had worked overtime? (Remember to reduce the fraction.)

11. What percent of the workers in problem 10 had worked overtime?

12. Bill received $10 for his tenth birthday. Each year after that, he received $1 more than he did on his previous birthday. He saved all his birthday money. In all, how much birthday money did Bill have on his fifteenth birthday?

13. Every morning Marta walks $2 \frac{1}{2}$ miles. How many miles does Marta walk in two mornings?

14. \[9.36 - (4.37 - 3.8)\]

15. \[24.32 - (8.61 + 12.5)\]

16. \[\frac{5}{8} + 3 \frac{3}{8}\]

17. \[6 \frac{3}{10} + 1 \frac{2}{10}\]

18. \[8 \frac{2}{3} - 5 \frac{1}{3}\]

19. \[4 \frac{3}{4} - 2 \frac{1}{4}\]

20. \[125 \times 16\]

21. \[12 \times \$1.50\]
22. \(\frac{6}{0} \overline{3642} \)

23. \(\frac{65, 76}{0} \overline{125 \div 5} \)

24. \(\frac{110}{0} \overline{645} \)

25. \(\frac{61, 62}{0} \overline{3m = 6^2} \)

26. If \(n \) is 16, then what does \(3n \) equal?

27. In three classrooms there were 18, 21, and 21 students. What was the average number of students per classroom?

28. Dion’s temperature is 99.8°F. Normal body temperature is about 98.6°F. Dion’s temperature is how many degrees above normal body temperature?

29. Estimate the area of this piece of land. Each small square represents one square mile.

30. If the arrow is spun, what is the probability that it will stop on a number greater than 5?
NEW CONCEPT

Two or more fractions have common denominators if their denominators are equal.

\[\frac{3}{8} \quad \frac{5}{8} \quad \frac{3}{8} \quad \frac{5}{9} \]

These two fractions have common denominators. These two fractions do not have common denominators.

In this lesson we will use common denominators to rename fractions whose denominators are not equal.

Example 1 Rename \(\frac{2}{3} \) and \(\frac{3}{4} \) so that they have a common denominator of 12.
Solution To rename a fraction, we multiply the fraction by a fraction name for 1. To change the denominator of \(\frac{2}{3} \) to 12, we multiply \(\frac{2}{3} \) by \(\frac{4}{4} \). To change the denominator of \(\frac{3}{4} \) to 12, we multiply \(\frac{3}{4} \) by \(\frac{3}{3} \).

\[
\frac{2}{3} \times \frac{4}{4} = \frac{8}{12} \quad \frac{3}{4} \times \frac{3}{3} = \frac{9}{12}
\]

\[
\frac{2}{3} = \frac{8}{12} \quad \frac{3}{4} = \frac{9}{12}
\]

Example 2 Rename \(\frac{1}{2} \) and \(\frac{1}{3} \) so that they have a common denominator.

Solution This time we need to find a common denominator before we can rename the fractions. The denominators are 2 and 3. We will list some multiples of 2 and of 3 to find multiples they have in common.

- Multiples of 2: 2, 4, 6, 8, 10, 12, ...
- Multiples of 3: 3, 6, 9, 12, 15, 18, ...

We see that 6 and 12 are both multiples of 2 and 3. Since 6 is less than 12, we will use 6 as our common denominator. To get denominators of 6, we multiply \(\frac{1}{2} \) by \(\frac{3}{3} \). We multiply \(\frac{1}{3} \) by \(\frac{2}{2} \).

\[
\frac{1}{2} \times \frac{3}{3} = \frac{3}{6} \quad \frac{1}{3} \times \frac{2}{2} = \frac{2}{6}
\]

\[
\frac{1}{2} = \frac{3}{6} \quad \frac{1}{3} = \frac{2}{6}
\]

Note: If we had used 12 for the common denominator, our fractions would have been \(\frac{6}{12} \) and \(\frac{4}{12} \). Usually, however, we rename fractions using their least common denominator.

LESSON PRACTICE

Practice set a. Rename \(\frac{1}{2} \) and \(\frac{1}{5} \) so that they have a common denominator of 10.

b. Rename \(\frac{3}{4} \) and \(\frac{5}{6} \) so that they have a common denominator of 12.

Rename each pair of fractions using their least common denominator.

c. \(\frac{1}{2} \) and \(\frac{2}{3} \)
d. \(\frac{1}{3} \) and \(\frac{1}{4} \)

e. \(\frac{1}{2} \) and \(\frac{3}{5} \)
f. \(\frac{2}{3} \) and \(\frac{2}{5} \)
MIXED PRACTICE

Problem set

1. Mona caught 24 polliwogs. If she let one fourth of them go, how many did she keep? Draw a picture to illustrate the problem.

2. Rectangular Park was 2 miles long and 1 mile wide. Gordon ran around the park twice. How many miles did he run?

3. If 2 oranges cost 42¢, how much would 8 oranges cost?

4. Three fourths of the 64 baseball cards showed players from the American League. How many of the baseball cards showed American League players? Draw a picture to illustrate the problem.

5. What percent of the baseball cards in problem 4 showed players from the American League?

6. Which of these fractions is not equivalent to \(\frac{1}{2}\)?
 A. \(\frac{3}{6}\) B. \(\frac{5}{10}\) C. \(\frac{10}{21}\) D. \(\frac{50}{100}\)

7. Complete each equivalent fraction:
 (a) \(\frac{1}{2} = ?\) \(\frac{1}{2}\) (b) \(\frac{1}{3} = ?\) \(\frac{1}{12}\) (c) \(\frac{1}{4} = ?\) \(\frac{1}{12}\)

8. Write the reduced form of each fraction:
 (a) \(\frac{5}{10}\) (b) \(\frac{8}{15}\) (c) \(\frac{6}{12}\)

9. Randy paid 42¢ for 6 clips and 64¢ for 8 erasers. What was the cost of each clip and each eraser? What would be the total cost of 10 clips and 20 erasers?

10. There were 14 volunteers the first year, 16 volunteers the second year, and 18 volunteers the third year. If the number of volunteers continued to increase by 2 each year, how many volunteers would there be in the tenth year?

11. (a) Rename \(\frac{1}{4}\) and \(\frac{2}{3}\) so that they have a common denominator of 12.
 (b) Rename \(\frac{1}{3}\) and \(\frac{3}{4}\) using their least common denominator.

12. A standard number cube is rolled. What is the probability that the number rolled will be less than seven?

13. \(47.14 - (3.63 + 36.3)\)

14. \(50.1 + (6.4 - 1.46)\)
15. \(\frac{3}{4} + \frac{3}{4} + \frac{3}{4} \)
16. \(\frac{4\frac{1}{6}}{6} + \frac{1\frac{1}{6}}{6} \)
17. \(\frac{5\frac{3}{5}}{5} + \frac{2\frac{2}{5}}{5} \)
18. \(\frac{5}{6} + \frac{1}{6} \)
19. \(12\frac{3}{4} - 3\frac{1}{4} \)
20. \(6\frac{1}{5} - \frac{1}{5} \)
21. \(340 \times 15 \)
22. \(26 \times 307 \)
23. \(70 \times 250 \)
24. \(\frac{3550}{5} \)
25. \(432 \div 30 \)
26. \(9\sqrt{5784} \)

27. Estimate the area of this pentagon. Each small square represents one square inch.

Karen is planning a trip to Los Angeles from Chicago for her vacation. She finds the following two round-trip flight schedules. Use the information to answer problems 28–30.

<table>
<thead>
<tr>
<th>Flight number</th>
<th>Departure city</th>
<th>Date</th>
<th>Time</th>
<th>Arrival city</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>12A</td>
<td>ORD Chicago</td>
<td>7/21</td>
<td>06:11 PM</td>
<td>LAX Los Angeles</td>
<td>7/21</td>
<td>08:21 PM</td>
</tr>
<tr>
<td>46</td>
<td>LAX Los Angeles</td>
<td>7/28</td>
<td>06:39 PM</td>
<td>ORD Chicago</td>
<td>7/29</td>
<td>12:29 AM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight number</th>
<th>Departure city</th>
<th>Date</th>
<th>Time</th>
<th>Arrival city</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>ORD Chicago</td>
<td>7/21</td>
<td>08:17 AM</td>
<td>LAX Los Angeles</td>
<td>7/21</td>
<td>10:28 AM</td>
</tr>
<tr>
<td>142</td>
<td>LAX Los Angeles</td>
<td>7/28</td>
<td>03:28 PM</td>
<td>ORD Chicago</td>
<td>7/28</td>
<td>09:18 PM</td>
</tr>
</tbody>
</table>

28. If Karen wants to arrive in Los Angeles in the morning, how much will she pay for airfare?

29. If Karen chooses the more economical round trip, when is her return flight scheduled to land?

30. There is a 2-hour time difference between Chicago and Los Angeles. So a flight between these cities lasts about how long?
 A. 2 hours B. 4 hours C. 6 hours D. 8 hours
Rounding Whole Numbers Through Hundred Millions

WARM-UP

Facts Practice: 90 Division Facts (Test J)

Mental Math:

| a. 10% of 70 | b. 20% of 70 | c. 30% of 70 |
| d. 40% of 70 | e. 60% of 70 | f. 100% of 70 |

Roman numerals:

g. Compare: CXC 120

h. Write LXXIX in our number system.

Patterns:

The fractions in the sequence below all equal one fourth. Write the next four fractions in this sequence.

\[
\frac{1}{4}, \frac{2}{8}, \frac{3}{12}, \ldots
\]

NEW CONCEPT

We have rounded whole numbers to the nearest hundred and to the nearest thousand. In this lesson we will practice rounding numbers to the nearest ten thousand, the nearest hundred thousand, and so on through the nearest hundred million.

Recall the locations of the whole-number place values through hundred millions:

- hundred millions
- ten millions
- millions
- hundred thousands
- ten thousands
- thousands
- hundred thousands
- ten thousands
- thousands
- hundreds
- tens
- ones
- decimal point

After rounding to the nearest ten thousand, each place to the right of the ten-thousands place will be zero.

Example 1

Round 38,274 to the nearest ten thousand.

Solution

Counting by ten thousands, we say “ten thousand, twenty thousand, thirty thousand, forty thousand,” and so on. We know that 38,274 is between 30,000 and 40,000. Halfway between is 35,000. Since 38,274 is greater than 35,000, we round up to **40,000**.
After rounding to the nearest hundred thousand, each place to the right of the hundred-thousands place will be zero.

Example 2 Round 427,063 to the nearest hundred thousand.

Solution Counting by hundred thousands, we say “one hundred thousand, two hundred thousand, three hundred thousand, four hundred thousand,” and so on. We know that 427,063 is between 400,000 and 500,000. Halfway between is 450,000. Since 427,063 is less than halfway between 400,000 and 500,000, we round down to 400,000.

Example 3 Round 12,876,250 to the nearest million.

Solution The number begins with “twelve million.” Counting by millions from 12 million, we say “twelve million, thirteen million,” and so on. So 12,876,250 is between 12,000,000 and 13,000,000. Since 12,876,250 is more than halfway to 13,000,000, we round up to 13,000,000.

LESSON PRACTICE

Practice set Round each number to the nearest ten thousand:

a. 19,362

b. 31,289

Round each number to the nearest hundred thousand:

c. 868,367

d. 517,867

e. Round 2,156,324 to the nearest million.

f. Round 28,376,000 to the nearest ten million.

g. Round 412,500,000 to the nearest hundred million.

MIXED PRACTICE

Problem set

1. Robin separated his 45 merry men as equally as possible into 4 groups. How many merry men were in the largest group?

2. (a) What is the area of this rectangle?
(b) What is the perimeter of this rectangle?
3. Julio answered \(\frac{5}{6} \) of the 90 questions correctly. How many questions did Julio answer correctly? Draw a picture to illustrate the problem.

4. Name the shape of each object:
 (a) roll of paper towels (b) baseball

5. Write the reduced form of each fraction:
 (a) \(\frac{3}{6} \) (b) \(\frac{5}{15} \) (c) \(\frac{8}{12} \)

6. Rename \(\frac{3}{4} \) and \(\frac{5}{6} \) using their least common denominator.

7. Which digit is in the ten-millions place in 328,496,175?

8. Draw a picture to help you solve this problem: Winder is on the road from Atlanta to Athens. It is 73 miles from Athens to Atlanta. It is 23 miles from Winder to Athens. How many miles is it from Winder to Atlanta?

9. The chance of rain is 80%. What is the chance that it will not rain?

10. A nickel is what percent of a dime?

11. \(4.36 + 12.7 + 10.72 \)
12. \(8.54 - (4.2 - 2.17) \)

13. \(\frac{5}{9} + \frac{5}{9} \)
14. \(\frac{2}{3} + \frac{2}{3} \)
15. \(\frac{4}{8} + 1 \)

16. \(\frac{7}{3} + \frac{1}{3} \)
17. \(\frac{4}{9} + \frac{1}{9} \)
18. \(\frac{11}{12} + \frac{1}{12} \)

19. \(570 \times 64 \)
20. \(382 \times 31 \)
21. \(54 \times 18 \)

22. \(\frac{3731}{7} \)
23. \(\sqrt{5432} \)
24. \(\sqrt{548} \)

25. Below are the first five square numbers:

1, 4, 9, 16, 25

What are the next five square numbers?
26. In the year 2000 the population of Texas was 20,851,820. Round that number to the nearest million.

27. Jim built a square frame using two-by-fours, but when he leaned against it, the frame shifted to this shape. What word does not name this shape?
 - A. quadrilateral
 - B. parallelogram
 - C. rhombus
 - D. trapezoid

28. If the perimeter of a square is 6 centimeters, then each side is how many millimeters long?

29. This cube is made up of how many smaller cubes?

30. A cube has how many more vertices than this pyramid?
Lesson 118

Dividing by Two-Digit Numbers

WARM-UP

Facts Practice: 90 Division Facts (Test I)

Mental Math:
Find the stated percent of each number:

- a. 50% of 34
- b. 50% of 25
- c. 100% of 25

Review:
- d. 5 × 66
- e. $10.00 - $9.13
- f. 67 + 29 + 200

Roman numerals:
- g. Write CCLX in our number system.
- h. Write XCI in our number system.

Problem Solving:
The weather forecast stated that the chance of rain is 30%. What is the chance that it will not rain? Is it more likely to rain or not to rain? If it were as likely to rain as not to rain, what would be the chance of rain?

NEW CONCEPT

We have divided by two-digit numbers that are multiples of 10. In this lesson we will begin dividing by other two-digit numbers. When dividing by two-digit numbers, we sometimes accidentally choose an “answer” that is too large. If this happens, we start over and try a smaller number.

Example 1 Divide: \(\overline{31} \) 95

Solution

Step 1: To help us divide \(\overline{31} \) 95, we may think “3|9.” We write “3” above the 5 in 95.

\[
\begin{array}{c|cc}
3 & 95 \\
--- & --- \\
2 & 93 \\
--- & --- \\
--- & 2
\end{array}
\]

Step 2: We multiply 3 by 31 and write “93.”

Step 3: We subtract 93 from 95 and write “2.”

Step 4: There are no digits to bring down. The answer is **3 R 2**.
Example 2 Divide: \(43 \div 246 \)

Solution

Step 1: To help us divide \(43 \div 246 \), we may think “4\(\scriptsize{24} \)”.* We write “6” above the 6 in 246. \(\frac{\begin{array}{c} 6 \\ \end{array}}{246} \)

Step 2: We multiply 6 by 43 and write “258.” We see that 258 is greater than 246, so 6 is too large for our answer.

START OVER:

Step 1: This time we try 5 as our answer. \(5 \frac{R}{246} 31 \)

Step 2: We multiply 5 by 43 and write “215.”

Step 3: We subtract 215 from 246 and write “31.”

Step 4: There are no digits to bring down. The answer is \(5 \frac{R}{31} 31 \).

Example 3 Divide: \(21 \div 487 \)

Solution

This problem has a two-digit answer. We continue to follow the four steps: divide, multiply, subtract, and bring down.

Step 1: We break the problem into a smaller division problem. We think “21\(\scriptsize{48} \)” and write “2” above the 8 in 487. \(\frac{\begin{array}{c} 2 \\ \end{array}}{21\scriptsize{487}} \)

Step 2: We multiply 2 by 21 and write “42.”

Step 3: We subtract 42 from 48 and write “6.”

Step 4: We bring down the 7, making 67.

REPEAT:

Step 1: We divide 67 by 21 and write “3” above the division box. \(21\scriptsize{487} \)

Step 2: We multiply 3 by 21 and write “63.”

Step 3: We subtract 63 from 67 and write “4.”

Step 4: There are no digits to bring down. The answer is \(23 \frac{R}{4} 4 \).
LESSON PRACTICE

Practice set* Divide:

a. $32 \div 128$

b. $21 \div 90$

c. $25 \div 68$

d. $42 \div 250$

e. $41 \div 880$

f. $11 \div 555$

MIXED PRACTICE

Problem set Use the information in the graph to answer problems 1–3.

1. On which day was the temperature the highest?

2. What was the high temperature on Tuesday?

3. From Monday to Wednesday, the high temperature went up how many degrees?

4. (a) What is the perimeter of this rectangle?
 (b) What is the area of the rectangle?

5. The first five square numbers are 1, 4, 9, 16, and 25, and their average is 11. What is the average of the next five square numbers?

6. What percent of the months of the year begin with the letter J?

7. What is the probability of drawing an ace from a full deck of cards? (There are 52 cards in a deck. Four of the cards are aces.)

8. Name each shape:
 (a)
 (b)
 (c)

9. Write the reduced form of each fraction:
 (a) $\frac{6}{8}$
 (b) $\frac{4}{9}$
 (c) $\frac{4}{16}$
10. Rename $\frac{2}{3}$ and $\frac{3}{4}$ using their least common denominators.

11. Use words to write the number 27386415.

12. $\frac{4}{5} + \frac{3}{5}$

13. $\frac{5}{6} + \frac{2}{6}$

14. $\frac{3}{4} + \frac{1}{4}$

15. $\frac{13}{50}$

16. 28

17. 5

18. $\frac{72}{297}$

19. $\frac{5}{8} + \frac{5}{8}$

20. $\frac{1}{6} + \frac{2}{6} + \frac{1}{6}$

21. 720×36

22. $147 \times 54 + \frac{4}{55}$

23. $\frac{8}{5766}$

24. $\frac{21}{441}$

25. 4.75 + 16.14 + 10.9

26. $18.4 - (4.32 - 2.6)$

27. In the year 2000 the population of the state of New York was 18,976,457. Round that number to the nearest million.

28. Round 297,576,320 to the nearest hundred million.

On Gabriella’s first nine tests she earned these scores:

90, 95, 80, 85, 100, 95, 75, 95, 90

Use this information to answer problems 29 and 30.

29. What is the median and range of Gabriella’s scores?

30. What is the mode of Gabriella’s scores?
Adding and Subtracting Fractions with Different Denominators

NEW CONCEPT

In order to add or subtract fractions that have different denominators, we must first rename the fractions so that they have common denominators. Recall that we rename a fraction by multiplying it by a fraction name for 1.

Example 1

Add: \(\frac{1}{4} + \frac{3}{8} \)

Solution

The denominators are different. We rename \(\frac{1}{4} \) by multiplying it by \(\frac{2}{2} \). The product is \(\frac{2}{8} \). This gives us common denominators, so now we can add.

\[
\begin{align*}
\text{Rename.} & \\
\frac{1}{4} \times \frac{2}{2} &= \frac{2}{8} \\
\frac{3}{8} &= \frac{3}{8} \\
\text{Add.} & \\
\frac{2}{8} + \frac{3}{8} &= \frac{5}{8}
\end{align*}
\]
Example 2 Subtract: $\frac{5}{6} - \frac{1}{2}$

Solution The denominators are different. We rename $\frac{1}{2}$ as a fraction whose denominator is 6. Then we subtract and reduce the answer.

\[
\begin{align*}
\text{Rename.} & \quad \frac{5}{6} = \frac{5}{6} \\
\text{Subtract.} & \quad - \frac{1}{2} \times \frac{3}{3} = \frac{3}{6} \\
\text{Reduce.} & \quad \frac{2}{6} = \frac{1}{3}
\end{align*}
\]

LESSON PRACTICE

Practice set* Find each sum or difference. Reduce when possible.

a. $\frac{1}{2} + \frac{2}{6}$

b. $\frac{1}{3} + \frac{1}{9}$

c. $\frac{1}{8} + \frac{1}{2}$

d. $\frac{3}{8} - \frac{1}{4}$

e. $\frac{2}{3} - \frac{2}{9}$

f. $\frac{7}{8} - \frac{1}{2}$

MIXED PRACTICE

Problem set 1. Clotilda used 1-foot-square floor tiles to cover the floor of a room 15 feet long and 12 feet wide. How many floor tiles did she use?

2. (a) What is the perimeter of this triangle?

(b) Is this triangle equilateral, isosceles, or scalene?

3. Tim found that $\frac{3}{8}$ of the 32 pencils in the room had no erasers. How many pencils had no erasers? Draw a picture to illustrate the problem.

4. Seventy-two eggs is how many dozen eggs?

5. How many eggs is 50% of one dozen eggs?

6. This cube is constructed of smaller cubes that are each one cubic centimeter in volume. What is the volume of the larger cube?
7. Farmica bought 2 DVDs priced at $21.95 each and 2 CDs priced at $14.99 each. The tax was $4.62. What was the total cost of the items?

8. Roger drove 285 miles in 5 hours. What was his average speed in miles per hour?

9. Which of these fractions is not equivalent to $\frac{1}{2}$?
 - A. $\frac{4}{8}$
 - B. $\frac{11}{22}$
 - C. $\frac{15}{30}$
 - D. $\frac{12}{25}$

10. Write the reduced form of each fraction:
 - (a) $\frac{8}{10}$
 - (b) $\frac{6}{15}$
 - (c) $\frac{8}{16}$

11. Use words to write the number 123415720.

12. $8.3 + 4.72 + 0.6 + 12.1$

13. $17.42 - (6.7 - 1.23)$

14. $\frac{3}{8} + \frac{3}{8}$

15. $\frac{1}{4} + \frac{1}{8}$

16. $\frac{1}{2} + \frac{1}{6}$

17. $\frac{5}{6} - \frac{1}{6}$

18. $\frac{1}{4} - \frac{1}{8}$

19. $\frac{1}{2} - \frac{1}{6}$

20. 87×16

21. 49×340

22. 504×30

23. $\frac{35.40}{6}$

24. $\frac{5784}{4}$

25. $7\sqrt{2385}$

26. $30 \frac{450}{110}$

27. $32 \frac{450}{118}$

28. $15 \frac{450}{118}$

29. What is the probability of drawing a heart from a full deck of cards? (There are 13 hearts in a deck.)

30. Draw a rectangle that is 5 cm long and 2 cm wide, and divide the rectangle into square centimeters. Then shade 30% of the rectangle.
LESSON 120

Adding and Subtracting Mixed Numbers with Different Denominators

WARM-UP

Facts Practice: 90 Division Facts (Test J)

Mental Math:

Find the stated percent of 100:

- a. 75% of 100
- b. 70% of 100
- c. 100% of 100

Review:

- d. 20 \times 23
- e. $20.00 - 12.75$
- f. 127 + 35

Roman numerals:

- g. Write MCM in our number system.
- h. Write XCIX in our number system.

Patterns:

Find the next eight numbers in this sequence:

\[
\frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{7}{8}, 1, _, _, _, _, _, _, _, _, _\ldots
\]

NEW CONCEPT

To add or subtract mixed numbers, we first make sure the fractions have common denominators.

Example 1 Add: \(4\frac{1}{6} + 2\frac{1}{2}\)

Solution The denominators of the fractions are not the same. We can rename \(\frac{1}{2}\) so that it has a denominator of 6 by multiplying \(\frac{1}{2}\) by \(\frac{3}{3}\). Then we add, remembering to reduce the fraction part of our answer.

\[
\begin{align*}
4\frac{1}{6} & = 4\frac{1}{6} \\
+ 2\frac{1}{2} & = 2\frac{3}{6} \\
\hline
6\frac{4}{6} & = 6\frac{2}{3}
\end{align*}
\]
Example 2 Subtract: $\frac{5\frac{3}{4}}{4} - \frac{3\frac{5}{8}}{8}$

Solution We first rewrite the problem so that the fractions have common denominators. We can rename $\frac{3}{4}$ so that it has a denominator of 8 by multiplying $\frac{3}{4}$ by $\frac{2}{2}$. Then we subtract.

$$
\frac{5\frac{3}{4}}{4} = \frac{5\frac{6}{8}}{8} \\
\frac{-3\frac{5}{8}}{8} = \frac{3\frac{5}{8}}{8} \\
\frac{2\frac{1}{8}}{8}
$$

LESSON PRACTICE

Practice set Add. Reduce when possible.

- a. $\frac{3\frac{1}{2}}{2} + \frac{1\frac{1}{4}}{4}$
- b. $\frac{4\frac{3}{4}}{4} + \frac{1\frac{1}{8}}{8}$
- c. $\frac{4\frac{1}{5}}{5} + \frac{1\frac{3}{10}}{10}$
- d. $\frac{6\frac{1}{6}}{6} + \frac{1\frac{1}{3}}{3}$

Subtract. Reduce when possible.

- e. $\frac{3\frac{7}{8}}{8} - \frac{1\frac{1}{4}}{4}$
- f. $\frac{2\frac{3}{5}}{5} - \frac{2\frac{1}{10}}{10}$
- g. $\frac{6\frac{7}{12}}{12} - \frac{1\frac{1}{6}}{6}$
- h. $\frac{4\frac{3}{4}}{4} - \frac{1\frac{1}{2}}{2}$

MIXED PRACTICE

Problem set

1. The Martins drank 11 gallons of milk each week. How many quarts of milk did they drink each week?

2. Sixty fleas leaped onto Rover as he ran through the field. If one fourth of them perished from flea powder, how many survived? Draw a picture to illustrate the problem.

3. (a) What is the area of this square?
 (b) What is the perimeter of the square?
4. Maria is 8 inches taller than Jermaine. Jermaine is 5 inches taller than Jan. Maria is 61 inches tall. How many inches tall is Jan?

5. What is the average height of the three children in problem 4?

6. Mayville is on the road from Altoona to Watson. It is 47 miles from Mayville to Altoona. It is 24 miles from Mayville to Watson. How far is it from Altoona to Watson?

7. If the arrow is spun, what is the probability that it will stop on a number greater than 4?

8. The asking price for the new house was $298,900. Round that amount of money to the nearest hundred thousand dollars.

9. Name each shape:
 (a)
 (b)
 (c)

10. Write the reduced form of each fraction:
 (a) \(\frac{9}{15} \)
 (b) \(\frac{10}{12} \)
 (c) \(\frac{12}{16} \)

11. Use digits to write one hundred nineteen million, two hundred forty-seven thousand, nine hundred eighty-four.

12. \(14.94 - (8.6 - 4.7) \)
13. \(6.8 - (1.37 + 2.2) \)

14. \(\frac{32}{5} + \frac{4}{5} \)
15. \(\frac{5}{8} + \frac{1}{4} \)
16. \(\frac{1}{3} + \frac{1}{6} \)

17. \(\frac{9}{10} - \frac{1}{5} \)
18. \(\frac{5}{8} - \frac{1}{4} \)
19. \(\frac{1}{3} - \frac{1}{6} \)

20. \(38 \times 217 \)
21. \(173 \times 60 \)
22. \(90 \times 500 \)

23. \(\sqrt[7]{2942} \)
24. \(\sqrt[10]{453} \)
25. \(\sqrt[11]{453} \)

26. Evaluate \(m + n \) when \(m \) is \(3\frac{2}{5} \) and \(n \) is \(2\frac{1}{10} \).
27. What is the volume of this rectangular solid?

28. Segment \(AC \) is \(3\frac{1}{2} \) inches long. Segment \(AB \) is \(1\frac{1}{2} \) inches long. How long is segment \(BC \)?

29. Fewer people live in Wyoming than in any other state. According to the 2000 U.S. census, 493,782 people lived in Wyoming. Round this number of people to the nearest hundred thousand.

30. One half of a dollar plus \(\frac{1}{4} \) of a dollar totals what percent of a dollar?
Focus on

Solving Equations

An equation states that two quantities are equal. One model for an equation is a balanced scale. The scale below is balanced because the combined weight on one side of the scale equals the combined weight on the other side. The weight of each block is given by its number. We do not know the weight of the block labeled \(N \). Below the scale we have written an equation for the illustration.

\[
\text{\[N + 3 = 10 \]}
\]

We can find the weight \(N \) by removing a weight of 3 from each side of the scale. Then \(N \) is alone on one side of the scale, and the weight on the other side of the scale must equal \(N \).

Remove 3 from each side of the scale:

\[
\text{\[N = 7 \]}
\]

Here is another balanced scale. We see that two blocks of weight \(X \) balance four blocks of weight 3.

\[
\text{\[2X = 12 \]}
\]
We can find the weight X by removing half of the weight from each side of the scale. Now one block of weight X balances two blocks of weight 3.

Remove half the weight from each side of the scale.

$X = 6$

Activity: Solving Equations

Materials needed by each student:

- 1 copy of Activity Master 23 (masters available in *Saxon Math 5/4 Assessments and Classroom Masters*)

As a class, work problems 1–8 on Activity Master 23. Write an equation for each illustration, and discuss how to get the lettered block alone on one side of the scale while keeping the scale balanced.

Extension Have each student create an equation for the class to solve using the model of a balanced scale and an unknown weight.
Additional Topics and Supplemental Practice
Using Money Manipulatives to Represent Decimal Place Value

NEW CONCEPT

Materials needed for each student:

- money manipulatives ($100, $10, and $1 bills, dimes, and pennies)
- zip-top plastic bags to store manipulatives for later use

In this activity we will use bills, dimes, and pennies to illustrate place value.

The bills and coins shown above can be combined to illustrate different amounts of money. For example, we can show $234.21 like this:

Arrange bills and coins to form the following money amounts. Place each denomination of bills and coins in a separate stack. The stacks should be arranged so that they go from the largest denomination on the left to the smallest on the right.

a. $345.23

b. $0.42
c. $5.20

d. $3.02

Now we will use bills and coins to represent decimal numbers that are not money amounts. Below we show an example of money representing the number 4.23 (four and twenty-three hundredths).

Use bills and coins to represent these decimal numbers:

e. 3.42 (three and forty-two hundredths)
f. 0.24 (twenty-four hundredths)
g. 12.03 (twelve and three hundredths)
h. 1.3 (one and three tenths)
Roman Numerals Through 39

NEW CONCEPT

Roman numerals were used by the ancient Romans to write numbers. Today Roman numerals are still used to number such things as book chapters, movie sequels, and Super Bowl games. We might also find Roman numerals on clocks and buildings.

Some Roman numerals are

- I which stands for 1
- V which stands for 5
- X which stands for 10

The Roman numeral system does not use place value. Instead, the values of the numerals are added or subtracted, depending on their position. For example,

- II means 1 plus 1, which is 2 (II does not mean “11”)

Below we list the Roman numerals for the numbers 1 through 20. Study the patterns.

1 = I	11 = XI
2 = II	12 = XII
3 = III	13 = XIII
4 = IV	14 = XIV
5 = V	15 = XV
6 = VI	16 = XVI
7 = VII	17 = XVII
8 = VIII	18 = XVIII
9 = IX	19 = XIX
10 = X	20 = XX
The multiples of 5 are 5, 10, 15, 20, The numbers that are one less than these (4, 9, 14, 19, ...) have Roman numerals that involve subtraction.

\[
\begin{align*}
4 &= IV \quad (\text{“one less than five”}) \\
9 &= IX \quad (\text{“one less than ten”}) \\
14 &= XIV \quad (\text{ten plus “one less than five”}) \\
19 &= XIX \quad (\text{ten plus “one less than ten”})
\end{align*}
\]

In each case where a smaller Roman numeral (I) precedes a larger Roman numeral (V or X), we subtract the smaller number from the larger number.

Example
(a) Write XXVII in our number system.†
(b) Write 34 in Roman numerals.

Solution
(a) We can break up the Roman numeral and see that it equals 2 tens plus 1 five plus 2 ones.

\[
\begin{align*}
XX & \quad V \quad II \\
20 & + 5 + 2 = 27
\end{align*}
\]

(b) We think of 34 as “30 plus 4.”

\[
\begin{align*}
30 & + 4 \\
XXX & \quad IV
\end{align*}
\]

So the Roman numeral for 34 is **XXXIV**.

LESSON PRACTICE

Practice set Write the Roman numerals for 1 to 39 in order.

†The modern world has adopted the Hindu-Arabic number system with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and base 10 place value. For simplicity we refer to the Hindu-Arabic system as “our number system.”
NEW CONCEPT

We have practiced using these Roman numerals:

\[
\begin{array}{c|c}
\text{Numeral} & \text{Value} \\
\hline
I & 1 \\
V & 5 \\
X & 10 \\
L & 50 \\
C & 100 \\
D & 500 \\
M & 1000 \\
\end{array}
\]

With these numerals we can write counting numbers up to XXXIX (39). To write larger numbers, we must use the Roman numerals L (50), C (100), D (500), and M (1000). The table below shows the different Roman numeral “digits” we have learned, as well as their respective values.

Example
Write each Roman numeral in our number system:

(a) LXX
(b) DCCL
(c) XLIV
(d) MMI

Solution

(a) LXX is 50 + 10 + 10, which is 70.
(b) DCCL is 500 + 100 + 100 + 50, which is 750.
(c) XLIV is “10 less than 50” plus “1 less than 5”; that is, 40 + 4 = 44.
(d) MMI is 1000 + 1000 + 1, which is 2001.

LESSON PRACTICE

Practice set
Write each Roman numeral in our number system:

a. CCCLXII
b. CCLXXXV
c. CD
d. XLVII
e. MMMCCLVI
f. MCMXCIX
NEW CONCEPT

Our **base 10 number system** uses place value and the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 to write numbers. The value of each place is ten times the value of the next-smaller place. Some U.S. coins and bills match our base 10 system. Ten pennies equals a dime; ten dimes equals a dollar, and so on. Using no more than nine of each of the coins and bills shown below, we can make any money amount from 1¢ to 99,999¢ ($999.99).

A different set of U.S. money matches the **base 5 number system**. Five pennies equals a nickel, and five nickels equals a quarter.

A base 5 system uses only the digits 0, 1, 2, 3, and 4 to write numbers, and the value of each place is only five times the value of the next-smaller place. Using no more than four pennies, four nickels, and four quarters, we can make any money amount from 1¢ to 124¢. However, when we write 124¢ in base 5 we do not use the number 124. Here is why. The first three places in base 5 are the ones place, the fives place, and the twenty-fives place. (It may be easier to think of these places as the pennies place, the nickels place, and the quarters place.)

Base 5 Place Values

<table>
<thead>
<tr>
<th>25’s place</th>
<th>5’s place</th>
<th>1’s place</th>
</tr>
</thead>
<tbody>
<tr>
<td>(quarters)</td>
<td>(nickels)</td>
<td>(pennies)</td>
</tr>
</tbody>
</table>
To make 124¢ requires 4 quarters, 4 nickels, and 4 pennies. So the number 124 changed to the base 5 system looks like this:

$$444 \text{ (base 5)}$$

To change a number to base 5, think of how many pennies, nickels, and quarters it would take to make the same number of cents. Remember to use no more than four of any coin. Also remember that you may need to use one or more zeros when you write a number in base 5, just as in base 10.

Example Change the number 15 from base 10 to base 5.

Solution We think of 15 as the money amount 15¢. We can make 15¢ by using 3 nickels and 0 pennies. So 15 in base 5 is written as 30 (base 5).

LESSON PRACTICE

Practice set Change each of these base 10 numbers to base 5.

- a. 31
- b. 51
- c. 10
- d. 100
- e. 38
- f. 86
Supplemental Practice Problems for Selected Lessons

This appendix contains additional practice problems for concepts presented in selected lessons. It is very important that no problems in the regular problem sets be omitted to make room for these problems. Saxon math is designed to produce long-term retention through repeated exposure to concepts in the problem sets. The problem sets provide enough initial exposure to concepts for most students. However, if a student continues to have difficulty with certain concepts, some of the problems in this appendix can be assigned as remedial exercises.
Lesson 16 Subtract:

1. 42 2. 30 3. 24 4. 54
 \[-23\] \[-16\] \[-17\] \[-27\]

5. 31 6. 60 7. 23 8. \(D\)
 \[-24\] \[-36\] \(-B\) \[-19\]

9. 57 10. \(H\) 11. 42 12. \(L\)
 \(-F\) \[-36\] \(-J\) \[-47\]
 \(29\) \(34\) \(5\) \(27\)

16. 60 – \(R\) = 33 17. \(P\) – 39 = 18 18. 72 – 64

19. \(T\) – 46 = 28 20. 35 – \(W\) = 7

Lesson 17 Add:

1. 12 2. 36 3. 12 4. 16
 8 8 23 36 54
 15 24 24 54 82
 +7 +16 +20 +32

5. 74 6. 57 7. 95 8. 47
 37 24 9 58 62
 60 38 78 62 108
 +46 +83 +35 +55

9. 34 10. 67 11. 314 12. 9
 27 15 28 32 55
 8 436 116 154 507
 +27 +25 +42 +97

13. 374 14. 66 15. 360 16. 40
 257 207 45 95
 38 84 179 379 416
 +146 +259 +78 +86

17. 36 18. 436 19. 363 20. 273
 275 39 247 54
 175 147 152 106
 +384 +88 +148 +50
Lesson 30 Subtract:

1. 263
2. 432
3. 520
4. 287
 \[\begin{array}{c}
 147 \\
 141 \\
 336 \\
 179 \\
\end{array} \]

5. 196
6. 479
7. 360
8. 424
 \[\begin{array}{c}
 57 \\
 286 \\
 134 \\
 254 \\
\end{array} \]

9. 316
10. 260
11. 415
 \[\begin{array}{c}
 79 \\
 146 \\
 387 \\
\end{array} \]

12. 247 – 79
13. 163 – 127
14. 459 – 367

15. 770 – 287
16. 612 – 78
17. 340 – 149

18. 210 – 86
19. 436 – 156
20. 520 – 417

Lesson 34 Use words to write each number:

1. 363
2. 1246
3. 12,280
4. 25,362
5. 123,570
6. 253,500
7. 112,060
8. 220,405
9. 204,050
10. 546,325

Use digits to write each number:

11. one thousand, two hundred seventy-eight
12. eleven thousand, five hundred forty-four
13. twenty-two thousand, four hundred thirty
14. fifty-seven thousand, nine hundred

15. one hundred seventy-one thousand, two hundred thirty

16. two hundred ten thousand, nine hundred

17. five hundred sixty-three thousand, fifty-eight

18. nine hundred eighty-seven thousand, six hundred fifty-four

19. one hundred five thousand, seventy

20. six hundred fifty thousand, four hundred three

Lesson 37 Name the fraction or mixed number marked by each arrow on these number lines:
Lesson 41
Subtract:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>300</td>
<td>2.</td>
<td>403</td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td>136</td>
<td></td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>600</td>
<td>6.</td>
<td>201</td>
<td>7.</td>
</tr>
<tr>
<td></td>
<td>249</td>
<td></td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>400</td>
<td>10.</td>
<td>101</td>
<td>11.</td>
</tr>
<tr>
<td></td>
<td>349</td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>100</td>
<td>14.</td>
<td>907</td>
<td>15.</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>800</td>
<td>18.</td>
<td>602</td>
<td>19.</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td></td>
<td>575</td>
<td></td>
</tr>
</tbody>
</table>

Lesson 43
Find each sum or difference:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$6.35 + $4</td>
<td>2.</td>
<td>$4.84 – $3</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>$0.36 + 85¢</td>
<td>4.</td>
<td>$0.49 – 15¢</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>48¢ + 67¢</td>
<td>6.</td>
<td>$1.25 – 8¢</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>$2.45 + 6¢</td>
<td>8.</td>
<td>75¢ – $0.67</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>98¢ + $12</td>
<td>10.</td>
<td>$1.00 – 95¢</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>$3.46 + $2 + 49¢</td>
<td>12.</td>
<td>50¢ – $0.07</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>36¢ + $0.12 + $2.14</td>
<td>14.</td>
<td>$2 – $1.37</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>$15 + $1.50 + 15¢</td>
<td>16.</td>
<td>$1 – 37¢</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>36¢ + 24¢ + 78¢</td>
<td>18.</td>
<td>$5 – $4.63</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>$5 + $0.36 + 9¢</td>
<td>20.</td>
<td>87¢ – 78¢</td>
<td></td>
</tr>
</tbody>
</table>
Lesson 48 Multiply:

1. \(36 \times 2\)
2. \(43 \times 5\)
3. \(57 \times 3\)
4. \(24 \times 6\)

5. \(38 \times 4\)
6. \(52 \times 7\)
7. \(27 \times 5\)
8. \(19 \times 8\)

9. \(28 \times 6\)
10. \(9 \times 56\)
11. \(47 \times 7\)

12. \(4 \times 89\)
13. \(64 \times 8\)
14. \(5 \times 75\)

15. \(63 \times 9\)
16. \(4 \times 76\)
17. \(97 \times 6\)

18. \(2 \times 68\)
19. \(54 \times 7\)
20. \(3 \times 45\)

Lesson 50 Find each sum or difference:

1. \(3.6 + 2.17\)
2. \(5.28 + 12.4\)

3. \(15.4 + 23.56\)
4. \(6.7 + 15.8\)

5. \(16.36 + 14.7\)
6. \(45.3 + 2.91\)

7. \(0.4 + 45.91\)
8. \(3.71 + 6.3\)

9. \(103.7 + 7.41\)
10. \(9.09 + 90.9\)

11. \(1.3 + 4.26 + 2.7\)
12. \(12.4 + 1.5 + 3.3\)

13. \(2.1 + 1.91 + 12.12\)
14. \(6.58 + 3.7 + 0.4\)

15. \(29.6 + 2.96 + 29.62\)
16. \(3.4 + 4.56 + 1.41\)

17. \(36.4 + 6.4 + 0.64\)

18. \(1.2 + 0.21 + 12.1 + 10.21\)

19. \(3.5 + 0.35 + 5.03 + 35.53 + 35.0\)

20. \(2.4 + 4.12 + 20.4 + 42.21 + 1.2\)

21. \(3.45 - 1.2\)
22. \(23.1 - 2.2\)

23. \(14.25 - 1.6\)
24. \(15.3 - 4.4\)
25. 7.59 – 1.8
26. 25.34 – 1.21

27. 16.25 – 1.9
28. 8.19 – 0.4

29. 13.26 – 12.2

30. 3.4 – 1.26
31. 4.0 – 2.14
32. 12.4 – 1.24

33. 7.4 – 1.22

34. 3.68 – 1.7

35. 12.1 – 1.21

36. 30.1 – 3.01

37. 34.05 – 6.4

38. 58.0 – 2.14

39. 3.09 – 1.8

40. 20.1 – 3.19

Lesson 52 Subtract:

1. 3486 – 1687
2. 2175 – 1346
3. 3747 – 1654

4. 4403 – 1475
5. 6300 – 3149
6. 2048 – 1951

7. 3000 – 1346
8. 4005 – 2418
9. 3040 – 1535

10. 6000 – 2164
11. 8010 – 7825
12. 5007 – 1838

13. 36,247 – 1,456
14. 30,148 – 23,109
15. 40,015 – 16,438

16. 30,000 – 256
17. 30,604 – 1,915
18. 90,040 – 37,478

19. 376,142 – 36,174
20. 403,700 – 394,672
Lesson 53 Divide:
1. $2)15$
2. $5)23$
3. $3)25$

4. $26 \div 6$
5. $31 \div 4$
6. $50 \div 7$

7. $5)37$
8. $8)35$
9. $6)43$

10. $30 \div 9$
11. $45 \div 7$
12. $17 \div 2$

13. $8)49$
14. $3)25$
15. $9)60$

16. $27 \div 4$
17. $15 \div 8$
18. $32 \div 5$

19. $3)20$
20. $6)34$

Lesson 58 Multiply:
1. 136×2
2. 235×5
3. 430×3

4. 216×6
5. 450×4
6. 7×642

7. 307×5
8. 458×8
9. 740×6

10. 368×7
11. 9×403
12. 490×8

13. 609×2
14. 470×9
15. 518×3

16. 2×296
17. 708×4
18. 3×430

19. 275×5
20. 4×308
Lesson 64 Divide:
1. $3 \overline{)48}$
2. $2 \overline{)56}$
3. $4 \overline{)72}$
4. $7 \overline{)98}$
5. $5 \overline{)80}$
6. $8 \overline{)96}$
7. $6 \overline{)90}$
8. $3 \overline{)81}$
9. $7 \overline{)91}$
10. $4 \overline{)68}$
11. $2 \overline{)76}$
12. $5 \overline{)90}$
13. $3 \overline{)54}$
14. $6 \overline{)84}$
15. $3 \overline{)78}$
16. $7 \overline{)84}$
17. $4 \overline{)84}$
18. $5 \overline{)85}$
19. $6 \overline{)72}$
20. $5 \overline{)65}$

Lesson 65 Divide:
1. $2 \overline{)110}$
2. $9 \overline{)126}$
3. $3 \overline{)222}$
4. $8 \overline{)432}$
5. $4 \overline{)256}$
6. $7 \overline{)455}$
7. $5 \overline{)320}$
8. $2 \overline{)192}$
9. $6 \overline{)342}$
10. $3 \overline{)204}$
11. $7 \overline{)266}$
12. $4 \overline{)100}$
13. $8 \overline{)456}$
14. $5 \overline{)365}$
15. $9 \overline{)468}$
16. $6 \overline{)162}$
17. $4 \overline{)252}$
18. $7 \overline{)665}$
19. $8 \overline{)600}$
20. $5 \overline{)245}$

Lesson 67 Multiply:
1. 32×20
2. $43\cent \times 30$
3. 56×40
4. $\$0.68 \times 20$
5. 47×60
6. $\$1.68 \times 20$
7. 20×75
8. $30 \times 49\cent$
9. 40×87
10. $\$0.97 \times 50$
11. $70 \times \$1.49$
12. 60×38
13. 80×76
14. $48¢ \times 90$
15. 20×89

16. 2.25×50
17. 0.39×60
18. 30×78

19. $40 \times 67¢$
20. 84×70

Lesson 68 Divide:
1. $4 \overline{)93}$
2. $2 \overline{)115}$
3. $5 \overline{)182}$

4. $3 \overline{)173}$
5. $6 \overline{)289}$
6. $4 \overline{)181}$

7. $7 \overline{)164}$
8. $5 \overline{)319}$
9. $8 \overline{)218}$

10. $6 \overline{)235}$
11. $9 \overline{)220}$
12. $7 \overline{)442}$

13. $2 \overline{)189}$
14. $8 \overline{)595}$
15. $3 \overline{)109}$

16. $9 \overline{)892}$
17. $4 \overline{)218}$
18. $2 \overline{)55}$

19. $5 \overline{)232}$
20. $3 \overline{)220}$

Lesson 76 Divide:
1. $3 \overline{)700}$
2. $6 \overline{)738}$
3. $4 \overline{)892}$

4. $7 \overline{)868}$
5. $5 \overline{)1606}$
6. $8 \overline{)915}$

7. $6 \overline{)1275}$
8. $9 \overline{)1926}$
9. $7 \overline{)2415}$

10. $3 \overline{)1603}$
11. $8 \overline{)1161}$
12. $4 \overline{)1111}$

13. $9 \overline{)3000}$
14. $5 \overline{)625}$
15. $3 \overline{)1333}$

16. $6 \overline{)1518}$
17. $4 \overline{)2250}$
18. $7 \overline{)1162}$

19. $8 \overline{)1000}$
20. $5 \overline{)3743}$

Lesson 80 Divide:
1. $4 \overline{)960}$
2. $5 \overline{)1600}$
3. $3 \overline{)1206}$

4. $9 \overline{)936}$
5. $4 \overline{)2082}$
6. $6 \overline{)1820}$

7. $7 \overline{)2801}$
8. $2 \overline{)1819}$
9. $5 \overline{)3404}$
Lesson 90 Multiply:
1. 12 × 36
2. 46 × 15
3. 31 × 27
4. 74 × 16
5. 36 × 63
6. 35 × 35
7. 14 × 63
8. 78 × 22
9. 25 × 37
10. 74 × 58
11. 63 × 49
12. 18 × 65
13. 96 × 32
14. 51 × 76
15. 38 × 24
16. 38 × 47
17. 49 × 86
18. 29 × 31
19. 33 × 79
20. 57 × 42

Lesson 104 Change each improper fraction to a mixed number or to a whole number:
1. \(\frac{3}{2}\)
2. \(\frac{9}{3}\)
3. \(\frac{4}{3}\)
4. \(\frac{7}{4}\)
5. \(\frac{12}{5}\)
6. \(\frac{4}{2}\)
7. \(\frac{5}{4}\)
8. \(\frac{7}{5}\)
9. \(\frac{3}{3}\)
10. \(\frac{9}{5}\)
11. \(\frac{5}{2}\)
12. \(\frac{8}{4}\)
13. \(\frac{15}{15}\)
14. \(\frac{5}{3}\)
15. \(\frac{9}{4}\)
16. \(\frac{6}{2}\)
17. \(\frac{6}{3}\)
18. \(\frac{10}{3}\)
19. \(\frac{7}{2}\)
20. \(\frac{7}{3}\)
Lesson 107 Find each sum or difference:

1. \[3 \frac{1}{2} + 1\]
2. \[3 \frac{1}{3} + \frac{1}{3}\]
3. \[1 \frac{1}{5} + \frac{3}{5}\]
4. \[4 + \frac{1}{2}\]
5. \[6 \frac{3}{5} + \frac{1}{5}\]
6. \[5 \frac{5}{8} + 6\]
7. \[3 \frac{3}{7} + 2 \frac{2}{7}\]
8. \[6 + 7 \frac{1}{2}\]
9. \[\frac{5}{9} + 3 \frac{2}{9}\]
10. \[3 \frac{3}{10} + 6 \frac{6}{10}\]
11. \[\frac{5}{3} - \frac{1}{3}\]
12. \[3 \frac{3}{4} - 2\]
13. \[6 \frac{1}{2} - \frac{1}{2}\]
14. \[8 \frac{3}{4} - \frac{3}{4}\]
15. \[\frac{25}{8} - \frac{2}{8}\]
16. \[4 \frac{4}{5} - \frac{1}{5}\]
17. \[4 \frac{4}{9} - 3\]
18. \[1 \frac{4}{5} - \frac{4}{5}\]
19. \[3 \frac{1}{2} - \frac{1}{2}\]
20. \[4 \frac{5}{7} - \frac{3}{7}\]

Lesson 110 Divide:

1. \[20 \overline{)460}\]
2. \[30 \overline{)630}\]
3. \[40 \overline{)520}\]
4. \[50 \overline{)1600}\]
5. \[60 \overline{)720}\]
6. \[70 \overline{)1470}\]
7. \[80 \overline{)1700}\]
8. \[90 \overline{)1200}\]
9. \[20 \overline{)680}\]
10. \[40 \overline{)1325}\]
11. \[60 \overline{)1450}\]
12. \[70 \overline{)2177}\]
13. \[80 \overline{)2001}\]
14. \[90 \overline{)1359}\]
15. \[20 \overline{)920}\]
16. \[40 \overline{)2088}\]
17. \[60 \overline{)2640}\]
18. \[70 \overline{)1624}\]
19. \[30 \overline{)1680}\]
20. \[50 \overline{)2710}\]

Lesson 112 Reduce each fraction:

1. \[\frac{5}{10}\]
2. \[\frac{2}{4}\]
3. \[\frac{6}{8}\]
4. \[\frac{2}{6}\]
5. \[\frac{3}{9}\]
6. \[\frac{4}{10}\]
7. \[\frac{3}{6}\]
8. \[\frac{2}{12}\]
9. \[\frac{9}{12}\]
10. \[\frac{4}{6}\]
11. \[\frac{6}{9}\]
12. \[\frac{8}{10}\]
Lesson 113 Multiply:

1. \(320 \times 12\)
2. \(132 \times 21\)
3. \(143 \times 23\)
4. \(150 \times 32\)
5. \(304 \times 13\)
6. \(315 \times 24\)
7. \(42 \times 163\)
8. \(230 \times 15\)
9. \(25 \times 402\)
10. \(357 \times 34\)
11. \(780 \times 56\)
12. \(406 \times 17\)
13. \(28 \times 196\)
14. \(460 \times 39\)
15. \(43 \times 179\)
16. \(108 \times 39\)
17. \(349 \times 74\)
18. \(470 \times 68\)
19. \(29 \times 357\)
20. \(186 \times 37\)

Lesson 114 Simplify the answer to each sum or difference:

1. \(\frac{1}{2} + \frac{1}{2}\)
2. \(\frac{1}{3} - \frac{1}{3}\)
3. \(\frac{1}{4} + \frac{1}{4}\)
4. \(\frac{3}{8} - \frac{1}{8}\)
5. \(\frac{1}{6} + \frac{2}{6}\)
6. \(\frac{5}{6} - \frac{1}{6}\)
7. \(\frac{2}{3} + \frac{2}{3}\)
8. \(\frac{7}{8} - \frac{1}{8}\)
9. \(\frac{4}{5} + \frac{3}{5}\)
10. \(\frac{3}{2} - \frac{1}{2}\)
11. \(\frac{2}{3} + \frac{1}{3}\)
12. \(\frac{3}{4} - \frac{1}{4}\)
13. \(\frac{4}{3} + \frac{5}{3}\)
14. \(\frac{3}{9} - \frac{1}{9}\)
15. \(\frac{1}{6} + \frac{1}{6}\)
16. \(6\frac{7}{10} - 4\frac{1}{10}\)
17. \(4\frac{5}{12} - 1\frac{1}{12}\)
18. \(5\frac{3}{4} + 4\frac{1}{4}\)
19. \(7\frac{4}{5} + 4\frac{4}{5}\)
20. \(7\frac{7}{8} - 3\frac{3}{8}\)
Lesson 115 In problems 1–8, find the fraction name for 1 used to make the equivalent fraction:

1. \(\frac{1}{2} \times \frac{?}{?} = \frac{3}{6} \)
2. \(\frac{1}{2} \times \frac{?}{?} = \frac{5}{10} \)

3. \(\frac{1}{2} \times \frac{?}{?} = \frac{6}{12} \)
4. \(\frac{1}{3} \times \frac{?}{?} = \frac{3}{9} \)

5. \(\frac{1}{6} \times \frac{?}{?} = \frac{2}{12} \)
6. \(\frac{3}{4} \times \frac{?}{?} = \frac{9}{12} \)

7. \(\frac{2}{5} \times \frac{?}{?} = \frac{4}{10} \)
8. \(\frac{2}{3} \times \frac{?}{?} = \frac{8}{12} \)

In problems 9–20, complete the equivalent fraction:

9. \(\frac{1}{4} = \frac{?}{8} \)
10. \(\frac{1}{3} = \frac{?}{6} \)
11. \(\frac{1}{2} = \frac{?}{4} \)

12. \(\frac{1}{2} = \frac{?}{8} \)
13. \(\frac{3}{4} = \frac{?}{8} \)
14. \(\frac{2}{3} = \frac{?}{9} \)

15. \(\frac{2}{5} = \frac{?}{10} \)
16. \(\frac{1}{2} = \frac{?}{12} \)
17. \(\frac{5}{6} = \frac{?}{12} \)

18. \(\frac{1}{2} = \frac{?}{4} \)
19. \(\frac{3}{4} = \frac{?}{12} \)
20. \(\frac{2}{3} = \frac{?}{12} \)

Lesson 118 Divide:

1. \(12)\overline{72} \)
2. \(31)\overline{124} \)
3. \(11)\overline{100} \)

4. \(41)\overline{125} \)
5. \(13)\overline{91} \)
6. \(21)\overline{107} \)

7. \(52)\overline{212} \)
8. \(25)\overline{130} \)
9. \(32)\overline{130} \)

10. \(22)\overline{135} \)
11. \(51)\overline{310} \)
12. \(14)\overline{80} \)

13. \(42)\overline{180} \)
14. \(23)\overline{161} \)
15. \(34)\overline{175} \)

16. \(15)\overline{105} \)
17. \(43)\overline{150} \)
18. \(24)\overline{200} \)
Lesson 119 Find each sum or difference:

1. $\frac{1}{4} + \frac{1}{2}$
2. $\frac{1}{4} + \frac{1}{8}$
3. $\frac{1}{2} + \frac{1}{8}$

4. $\frac{1}{4} - \frac{1}{8}$
5. $\frac{1}{2} - \frac{1}{8}$
6. $\frac{1}{3} - \frac{1}{6}$

7. $\frac{2}{3} + \frac{1}{6}$
8. $\frac{3}{4} + \frac{1}{8}$
9. $\frac{1}{3} + \frac{2}{9}$

10. $\frac{5}{6} - \frac{2}{3}$
11. $\frac{7}{8} - \frac{3}{4}$
12. $\frac{9}{10} - \frac{4}{5}$

13. $\frac{5}{6} + \frac{1}{12}$
14. $\frac{3}{10} + \frac{2}{5}$
15. $\frac{1}{3} + \frac{1}{12}$

16. $\frac{4}{5} - \frac{1}{10}$
17. $\frac{8}{9} - \frac{2}{3}$
18. $\frac{7}{8} - \frac{1}{4}$

19. $\frac{3}{5} + \frac{3}{10}$
20. $\frac{2}{3} - \frac{7}{12}$
GLOSSARY

acute angle An angle whose measure is more than 0° and less than 90°.

An *acute angle* is smaller than both a *right angle* and an *obtuse angle*.

acute triangle A triangle whose largest angle measures more than 0° and less than 90°.

addend Any one of the numbers in an addition problem that are combined to form a sum.

\[2 + 3 = 5\] The *addends* in this problem are 2 and 3.

addition An operation that combines two or more numbers to find a total number.

\[7 + 6 = 13\] We use *addition* to combine 7 and 6.

a.m. The period of time from midnight to just before noon.

I get up at 7 a.m. I get up at 7 o’clock in the morning.

angle The opening that is formed when two lines or line segments intersect.

These line segments form an angle.

area The number of square units needed to cover a surface.

The area of this rectangle is 10 square inches.
arithmetic The branch of mathematics involving addition, subtraction, multiplication, and division.

\[6 + 12 \quad 7 - 4 \quad 8 \times 3 \quad 35 \div 5\]

Addition, subtraction, multiplication, and division are the four operations of **arithmetic**.

array A rectangular arrangement of numbers or symbols in columns and rows.

\[
\begin{array}{c}
\text{XXX} \\
\text{XXX} \\
\text{XXX} \\
\text{XXX}
\end{array}
\]

This is a 3-by-4 **array** of X’s.

It has 3 columns and 4 rows.

associative property of addition The grouping of addends does not affect their sum. In symbolic form, \[a + (b + c) = (a + b) + c.\] Unlike addition, subtraction is not associative.

\[(8 + 4) + 2 = 8 + (4 + 2) \quad (8 - 4) - 2 \neq 8 - (4 - 2)\]

Addition is **associative**. Subtraction is not **associative**.

associative property of multiplication The grouping of factors does not affect their product. In symbolic form, \[a \times (b \times c) = (a \times b) \times c.\] Unlike multiplication, division is not associative.

\[(8 \times 4) \times 2 = 8 \times (4 \times 2) \quad (8 \div 4) \div 2 \neq 8 \div (4 \div 2)\]

Multiplication is **associative**. Division is not **associative**.

average The number found when the sum of two or more numbers is divided by the number of addends in the sum; also called mean.

To find the **average** of the numbers 5, 6, and 10, first add.

\[5 + 6 + 10 = 21\]

Then, since there were three addends, divide the sum by 3.

\[21 \div 3 = 7\]

The **average** of 5, 6, and 10 is 7.

bar graph A graph that uses rectangles (bars) to show numbers or measurements.

![Bar Graph](https://example.com/bar-graph.png)

This **bar graph** shows how many rainy days there were in each of these four months.
base
(1) The lower number in an exponential expression.

```
base \rightarrow 5^3 \leftarrow exponent
```

5^3 means $5 \times 5 \times 5$ and its value is 125.

(2) A designated side or face of a geometric figure.

bias
Favoring one choice over another in a survey.

"Which do you prefer with lunch: cool, sweet lemonade or milk that has been out of the refrigerator for an hour?"

Words like “cool” and “sweet” **bias** this survey question to favor the choice of lemonade.

borrowing
See **regrouping**.

calendar
A chart that shows the days of the week and their dates.

![Calendar](calendar.png)

capacity
The amount of liquid a container can hold.
Cups, gallons, and liters are units of capacity.

Celsius
A scale used on some thermometers to measure temperature.

*On the **Celsius** scale, water freezes at 0°C and boils at $100^\circ\text{C}.*

center
The point inside a circle from which all points on the circle are equally distant.

The **center** of circle A is 2 inches from every point on the circle.
century A period of one hundred years.

The years 2001–2100 make up one century.

chance A way of expressing the likelihood of an event; the probability of an event expressed as a percent.

The chance of rain is 20%. It is not likely to rain.

There is a 90% chance of snow. It is likely to snow.

chronological order The order of dates or times when listed from earliest to latest.

These years are listed in chronological order. They are listed from earliest to latest.

circle A closed, curved shape in which all points on the shape are the same distance from its center.

circle graph A graph made of a circle divided into sectors. Also called *pie graph*.

This circle graph displays data on students’ hair color.

circumference The distance around a circle; the perimeter of a circle.

If the distance from point A around to point A is 3 inches, then the circumference of the circle is 3 inches.
clockwise The same direction as the movement of a clock’s hands.

![Clockwise and counterclockwise turns](image)

common denominators Denominators that are the same.

The fractions $\frac{2}{5}$ and $\frac{3}{5}$ have **common denominators**.

common year A year with 365 days; not a leap year.

The year 2000 is a leap year, but 2001 is a **common year**. In a **common year** February has 28 days. In a leap year it has 29 days.

commutative property of addition Changing the order of addends does not affect their sum. In symbolic form, $a + b = b + a$. Unlike addition, subtraction is not commutative.

$$8 + 2 = 2 + 8$$
$$8 - 2 \neq 2 - 8$$

Addition is **commutative**. Subtraction is not **commutative**.

commutative property of multiplication Changing the order of factors does not affect their product. In symbolic form, $a \times b = b \times a$. Unlike multiplication, division is not commutative.

$$8 \times 2 = 2 \times 8$$
$$8 \div 2 \neq 2 \div 8$$

Multiplication is **commutative**. Division is not **commutative**.

compass A tool used to draw circles and arcs.

![Compass diagram](image)
cone A three-dimensional solid with a circular base and a single vertex.

These polygons are congruent. They have the same size and shape.

coordinate A number used to locate a point on a number line.

The coordinate of point A is –2.

counterclockwise The direction opposite of the movement of a clock’s hands.

counting numbers The numbers used to count; the numbers in this sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9,
The numbers 12 and 37 are counting numbers, but 0.98 and $\frac{1}{2}$ are not.

cube A three-dimensional solid with six square faces. Adjacent faces are perpendicular and opposite faces are parallel.
cubic unit A cube with edges of designated length. Cubic units are used to measure volume.

The shaded part is 1 cubic unit. The volume of the large cube is 8 cubic units.

cylinder A three-dimensional solid with two circular bases that are opposite and parallel to each other.

data (Singular: datum) Information used to make observations or calculations.

82, 76, 95, 62, 98, 97, 93

These data are Schuyler’s first 7 test scores.

decade A period of ten years.

The years 2001–2010 make up one decade.

decagon A polygon with ten sides.

decimal number A numeral that contains a decimal point.

23.94 is a decimal number because it contains a decimal point.

decimal places Places to the right of a decimal point.

5.47 has two decimal places.
6.3 has one decimal place.
8 has no decimal places.

decimal point A dot used to separate the ones place from the tenths place in decimal numbers (or dollars from cents in money).
degree (°) (1) A unit for measuring angles.

There are 90 degrees (90°) in a right angle.

There are 360 degrees (360°) in a circle.

(2) A unit for measuring temperature.

There are 100 degrees between the freezing and boiling points of water on the Celsius scale.

denominator The bottom number of a fraction; the number that tells how many parts are in a whole.

The denominator of the fraction is 4. There are 4 parts in the whole circle.

diameter The distance across a circle through its center.

The diameter of this circle is 1 inch.

difference The result of subtraction.

12 − 8 = 4 The difference in this problem is 4.

digit Any of the symbols used to write numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

The last digit in the number 2587 is 7.
distributive property A number times the sum of two addends is equal to the sum of that same number times each individual addend: \(a \times (b + c) = (a \times b) + (a \times c) \).

\[
8 \times (2 + 3) = (8 \times 2) + (8 \times 3)
\]

Multiplication is distributive over addition.

dividend A number that is divided.

\[
12 \div 3 = 4 \quad 3\overline{)12} \quad \frac{12}{3} = 4\]

The dividend is 12 in each of these problems.

division An operation that separates a number into a given number of equal parts or into a number of parts of a given size.

\[
21 \div 3 = 7 \quad \text{We use division to separate 21 into 3 groups of 7.}
\]

divisor A number by which another number is divided.

\[
12 \div 3 = 4 \quad 3\overline{)12} \quad \frac{12}{3} = 4\]

The divisor is 3 in each of these problems.

dozen A group of twelve.

The carton holds a dozen eggs.

The carton holds 12 eggs.

edge A line segment formed where two faces of a polyhedron intersect.

One edge of this cube is colored purple. A cube has 12 edges.

elapsed time The difference between the starting time and the ending time of an event.

The race started at 6:30 p.m. and finished at 9:12 p.m. The elapsed time of the race was 2 hours 42 minutes.

endpoints The points at which a line segment ends.

Points A and B are the endpoints of line segment AB.

equals Has the same value as.

12 inches equals 1 foot.
equation A number sentence that uses the symbol “=” to show that two quantities are equal.

\[x = 3 \quad x = 3 \quad 3 + 7 = 10 \quad 4 + 1 \quad x < 7 \]

equations

equilateral triangle A triangle in which all sides are the same length.

\[This \ is \ an \ equilateral \ triangle. \]
\[All \ of \ its \ sides \ are \ the \ same \ length. \]

equivalent fractions Different fractions that name the same amount.

\[\frac{1}{2} \quad \frac{2}{4} \]

\[\frac{1}{2} \quad and \quad \frac{2}{4} \quad are \quad equivalent \ fractions. \]

evaluate To find the value of an expression.

To evaluate \(a + b \) for \(a = 7 \) and \(b = 13 \), we replace \(a \) with 7 and \(b \) with 13:

\[7 + 13 = 20 \]

even numbers Numbers that can be divided by 2 without a remainder; the numbers in this sequence: 0, 2, 4, 6, 8, 10, …

Even numbers have 0, 2, 4, 6, or 8 in the ones place.

exchanging See regrouping.

expanded form A way of writing a number that shows the value of each digit.

The expanded form of 234 is 200 + 30 + 4.

exponent The upper number in an exponential expression; it shows how many times the base is to be used as a factor.

\[base \rightarrow 5^3 \leftarrow exponent \]

\(5^3 \) means \(5 \times 5 \times 5 \) and its value is 125.
exponential expression An expression that indicates that the base is to be used as a factor the number of times shown by the exponent.

\[4^3 = 4 \times 4 \times 4 = 64 \]

The exponential expression 4\(^3\) uses 4 as a factor 3 times. Its value is 64.

expression Any combination of symbols, numerals, or operators.

\[17^4, \quad 21 + 12, \quad 432 \times (16 - 7) \]

These three statements are expressions.

face A flat surface of a geometric solid.

![One face of the cube is shaded. A cube has six faces.](image)

fact family A group of three numbers related by addition and subtraction or by multiplication and division.

The numbers 3, 4, and 7 are a fact family. They make these four facts:

\[3 + 4 = 7, \quad 4 + 3 = 7, \quad 7 - 3 = 4, \quad 7 - 4 = 3 \]

factor Any one of the numbers multiplied in a multiplication problem.

\[2 \times 3 = 6 \quad \text{The factors in this problem are 2 and 3.} \]

Fahrenheit A scale used on some thermometers to measure temperature.

On the Fahrenheit scale, water freezes at \(32^\circ F\) and boils at \(212^\circ F\).

formula A rule, fact, or relationship expressed by an equation.

The formula for the circumference of a circle is \(C = 2\pi r\).

fraction A number that names part of a whole.

\[\frac{1}{4} \]

\(\frac{1}{4}\) of the circle is shaded. \(\frac{1}{4}\) is a fraction.
geometric solid A shape that takes up space.

geometry A major branch of mathematics that deals with shapes, sizes, and other properties of figures.

Some of the figures we study in geometry are angles, circles, and polygons.

graph A diagram that shows data in an organized way. See also bar graph, circle graph, line graph, and pictograph.

greater than Having a larger value than.

Five is greater than three (5 > 3).

hexagon A polygon with six sides.

horizontal Side to side; perpendicular to vertical.

identity property of addition The sum of any number and 0 is equal to the initial number. In symbolic form, \(a + 0 = a \). The number 0 is referred to as the **additive identity**.

The identity property of addition is shown by this statement: \(13 + 0 = 13 \).
identity property of multiplication The product of any number and 1 is equal to the initial number. In symbolic form, \(a \times 1 = a\). The number 1 is referred to as the multiplicative identity.

The identity property of multiplication is shown by this statement:

\[94 \times 1 = 94\]

improper fraction A fraction with a numerator greater than or equal to the denominator.

\[\frac{4}{3} \quad \frac{2}{2}\quad \text{These fractions are improper fractions.}\]

intersect To share a common point or points.

These two lines intersect. They share the common point M.

isosceles triangle A triangle with at least two sides of equal length.

Two of the sides of this isosceles triangle have equal lengths.

leap year A year with 366 days; not a common year.

In a leap year February has 29 days.

least common denominator (LCD) The least common multiple of the denominators of two or more fractions.

The least common denominator of \(\frac{5}{6}\) and \(\frac{3}{8}\) is the least common multiple of 6 and 8, which is 24.

legend A notation on a map, graph, or diagram that describes the meaning of the symbols and/or the scale used.

The legend of this scale drawing shows that \(\frac{1}{4}\) inch represents 5 feet.
less than Having a smaller value than.

Three is less than five (3 < 5).

line A straight collection of points extending in opposite directions without end.

```
A
\     \AB or line BA
\     |
B
```

line graph A graph that connects points to show how information changes over time.

![Line Graph Example]

This line graph shows Laura’s first four test scores.

line of symmetry A line that divides a figure into two halves that are mirror images of each other. _See also_ symmetry.

```
[Symmetry Examples]
```

line segment A part of a line with two distinct endpoints.

```
A
     \line AB
     |
     \  B
```

\overline{AB} is a line segment.

lowest terms A fraction is in _lowest terms_ if the only common factor of the numerator and the denominator is 1.

_In lowest terms, the fraction _\frac{8}{20}_ is _\frac{2}{5}._

mean _See_ average.

median The middle number (or the average of the two central numbers) of a list of data when the numbers are arranged in order from the least to the greatest.

1, 1, 2, 4, 5, 7, 9, 15, 24, 36, 44

In this list of data 7 is the median.
metric system An international system of measurement based on multiples of ten. Also called *International System*.

Centimeters and kilograms are units in the **metric system**.

midnight 12:00 a.m.

Midnight is one hour after 11 p.m.

mixed number A whole number and a fraction together.

The **mixed number** \(5 \frac{3}{4} \) means “five and three fourths.”

mode The number or numbers that appear most often in a list of data.

\[5, 12, 32, 5, 16, 5, 7, 12 \]

In this list of data the number 5 is the **mode**.

multiple A product of a counting number and another number.

The **multiples** of 3 include 3, 6, 9, and 12.

multiplication An operation that uses a number as an addend a specified number of times.

\[7 \times 3 = 21 \quad \text{We can use multiplication to} \]
\[7 + 7 + 7 = 21 \quad \text{use 7 as an addend 3 times.} \]

negative numbers Numbers less than zero.

–15 and –2.86 are **negative numbers**.

19 and 0.74 are not **negative numbers**.

noon 12:00 p.m.

Noon is one hour after 11 a.m.

number line A line for representing and graphing numbers. Each point on the line corresponds to a number.

number sentence A complete sentence that uses numbers and symbols but not words. See also equation.

The **number sentence** \(4 + 5 = 9 \) means “four plus five equals nine.”
numeral A symbol or group of symbols that represents a number.

4, 72, and \(\frac{1}{2} \) are examples of numerals.

“Four,” “seventy-two,” and “one half” are words that name numbers but are not numerals.

umerator The top number of a fraction; the number that tells how many parts of a whole are counted.

\[
\begin{array}{c}
\text{The numerator of the fraction is 1. One part of the whole circle is shaded.}
\end{array}
\]

oblique Slanted or sloping; not horizontal or vertical.

An oblique angle is larger than both a right angle and an acute angle.

obtuse triangle A triangle whose largest angle measures more than 90° and less than 180°.

octagon A polygon with eight sides.
Odd numbers Numbers that have a remainder of 1 when divided by 2; the numbers in this sequence: 1, 3, 5, 7, 9, 11, ...

Odd numbers have 1, 3, 5, 7, or 9 in the ones place.

Ordinal numbers Numbers that describe position or order.

“First,” “second,” and “third” are *ordinal numbers*.

Outlier A number in a list of data that is distant from the other numbers in the list.

In the data at right, the number 28 is an outlier because it is distant from the other numbers in the list.

1, 5, 4, 3, 6, 28, 7, 2

Parallel lines Lines that stay the same distance apart; lines that do not cross.

Parallelogram A quadrilateral that has two pairs of parallel sides.

Parallelograms

Not a parallelogram

Pentagon A polygon with five sides.

Percent A fraction whose denominator of 100 is expressed as a percent sign (%).

\[
\frac{99}{100} = 99\% = 99\ percent
\]

Perfect square See *square number*.

Perimeter The distance around a closed, flat shape.

The perimeter of this rectangle (from point A around to point A) is 32 inches.
perpendicular lines Two lines that intersect at right angles.

![Perpendicular Lines](image)

pictograph A graph that uses symbols to represent data.

Stars We Saw

<table>
<thead>
<tr>
<th>Name</th>
<th>Stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom</td>
<td>⭐⭐⭐⭐⭐</td>
</tr>
<tr>
<td>Bob</td>
<td>⭐⭐⭐</td>
</tr>
<tr>
<td>Sue</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>Ming</td>
<td>⭐⭐⭐⭐⭐</td>
</tr>
<tr>
<td>Juan</td>
<td>⭐⭐⭐⭐⭐</td>
</tr>
</tbody>
</table>

This is a **pictograph**. It shows how many stars each person saw.

pie graph See **circle graph**.

place value The value of a digit based on its position within a number.

\[
\begin{align*}
341 & \\
23 & + 7 \\
\underline{371} & \\
\end{align*}
\]

Place value tells us that 4 in 341 is worth “4 tens.” In addition problems we align digits with the same *place value*.

p.m. The period of time from noon to just before midnight.

I go to bed at 9 p.m. I go to bed at 9 o’clock at night.

point An exact position.

\[\bullet_A \]

This dot represents **point** A.

polygon A closed, flat shape with straight sides.

![Polygons](image)

population A group of people about whom information is gathered during a survey.

*A soft drink company wanted to know the favorite beverage of people in Indiana. The **population** they gathered information about was the people of Indiana.*
positive numbers Numbers greater than zero.

- 0.25 and 157 are positive numbers.
- -40 and 0 are not positive numbers.

probability The likelihood that something will happen. Probability can be expressed as a fraction with the number of favorable outcomes as the numerator and the number of possible outcomes as the denominator.

\[
\text{The probability of spinning } C \text{ is } \frac{1}{4}.
\]

product The result of multiplication.

\[
5 \times 3 = 15 \quad \text{The product of 5 and 3 is 15.}
\]

property of zero for multiplication Zero times any number is zero. In symbolic form, \(0 \times a = 0 \).

\[
\text{The property of zero for multiplication tells us that } 89 \times 0 = 0.
\]

pyramid A three-dimensional solid with a polygon as its base and triangular faces that meet at a vertex.

quadrilateral Any four-sided polygon.

\[
\text{Each of these polygons has 4 sides. They are all quadrilaterals.}
\]

quotient The result of division.

\[
12 \div 3 = 4 \quad \frac{4}{3} \div 12 \quad \frac{12}{3} = 4 \quad \text{The quotient is 4 in each of these problems.}
\]

radius (Plural: radii) The distance from the center of a circle to a point on the circle.

\[
\text{The radius of this circle is 1 centimeter.}
\]
range The difference between the largest number and smallest number in a list.

\[5, 17, 12, 34, 28, 13\]

To calculate the range of this list, we subtract the smallest number from the largest number. The range of this list is 29.

rate A measure of how far or how many are in one time group.

The leaky faucet wasted water at the rate of 1 liter per hour.

ray A part of a line that begins at a point and continues without end in one direction.

rectangle A quadrilateral that has four right angles.

reduce To rewrite a fraction in lowest terms.

If we reduce the fraction \(\frac{9}{12}\), we get \(\frac{3}{4}\).

reflection Flipping a figure to produce a mirror image.

regrouping To rearrange quantities in place values of numbers during calculations.

\[
\begin{array}{c}
214 \\
- 39 \\
\hline
175
\end{array}
\]

Subtraction of 39 from 214 requires regrouping.

regular polygon A polygon in which all sides have equal lengths and all angles have equal measures.
remainder An amount that is left after division.

\[
\begin{array}{c}
7 R 1 \\
\hline
2 \mid 15 \\
14 \\
\hline
1
\end{array}
\]

When 15 is divided by 2, there is a remainder of 1.

rhombus A parallelogram with all four sides of equal length.

right angle An angle that forms a square corner and measures 90°. It is often marked with a small square.

A right angle is larger than an acute angle and smaller than an obtuse angle.

right triangle A triangle whose largest angle measures 90°.

Roman numerals Symbols used by the ancient Romans to write numbers.

The Roman numeral for 3 is III.

The Roman numeral for 13 is XIII.

rotation Turning a figure about a specified point called the center of rotation.

sales tax The tax charged on the sale of an item and based upon the item’s purchase price.

If the sales-tax rate is 7%, the sales tax on a $5.00 item will be $5.00 \times 7\% = $0.35.
sample A part of a population used to conduct a survey.

Mya wanted to know the favorite television show of the fourth-grade students at her school. She asked only the students in Room 3 her survey question. In her survey the population was the fourth-grade students at the school, and the sample was the students in Room 3.

scale A type of number line used to measure things.

\[
\begin{array}{cccccccc}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\text{cm} & & & & & & & \\
\end{array}
\]

The distance between each mark on this ruler’s scale is 1 centimeter.

scalene triangle A triangle with three sides of different lengths.

All three sides of this scalene triangle have different lengths.

schedule A list of events organized by the times at which they are planned to occur.

<table>
<thead>
<tr>
<th>Sarah’s Class Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:15 a.m.</td>
</tr>
<tr>
<td>9:00 a.m.</td>
</tr>
<tr>
<td>10:15 a.m.</td>
</tr>
<tr>
<td>11:30 a.m.</td>
</tr>
<tr>
<td>12:15 p.m.</td>
</tr>
<tr>
<td>1:30 p.m.</td>
</tr>
<tr>
<td>2:45 p.m.</td>
</tr>
<tr>
<td>3:30 p.m.</td>
</tr>
</tbody>
</table>

sector A region bordered by part of a circle and two radii.

This circle is divided into 3 sectors.

segment See line segment.

sequence A list of numbers arranged according to a certain rule.

The numbers 5, 10, 15, 20, ... form a sequence. The rule is “count up by fives.”
side A line segment that is part of a polygon.

![This pentagon has 5 sides.]

similar Having the same shape but not necessarily the same size. Similar figures have matching angles and proportional sides.

![\Delta ABC and \Delta DEF are similar. They have the same shape, but they are not the same size.]

solid See geometric solid.

sphere A round geometric solid having every point on its surface at an equal distance from its center.

![sphere]

square (1) A rectangle with all four sides of equal length.

![All four sides of this square are 2 inches long.]

(2) The product of a number and itself.

The square of 4 is 16.

square number The product when a whole number is multiplied by itself.

The number 9 is a square number because \(9 = 3^2\).

square root One of two equal factors of a number. The symbol for the principal, or positive, square root of a number is \(\sqrt{}\).

A square root of 49 is 7 because \(7 \times 7 = 49\).
square unit A square with sides of designated length. Square units are used to measure area.

The shaded part is 1 square unit. The area of the large rectangle is 8 square units.

straight angle An angle that measures 180° and thus forms a straight line.

Angle ABD is a straight angle. Angles ABC and CBD are not straight angles.

subtraction The arithmetic operation that reduces a number by an amount determined by another number.

We use subtraction to take 12 away from 15. 15 − 12 = 3

sum The result of addition.

2 + 3 = 5 The sum of 2 and 3 is 5.

survey A method of collecting data about a particular population.

Mia conducted a survey by asking each of her classmates the name of his or her favorite television show.

symmetry Correspondence in size and shape on either side of a dividing line. This type of symmetry is known as reflective symmetry. See also line of symmetry.

These figures have symmetry. These figures do not have symmetry.

table A way of organizing data in columns and rows.

Our Team’s Grades

<table>
<thead>
<tr>
<th>Name</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juan</td>
<td>98</td>
</tr>
<tr>
<td>Tim</td>
<td>72</td>
</tr>
<tr>
<td>Laura</td>
<td>85</td>
</tr>
<tr>
<td>Min</td>
<td>96</td>
</tr>
</tbody>
</table>

This table shows the grades of four students.
tally mark A small mark used to help keep track of a count.

I used tally marks to count cars. I counted five cars.

tessellation The repeated use of shapes to fill a flat surface without gaps or overlaps.

transformation Changing a figure’s position through rotation, reflection, or translation.

<table>
<thead>
<tr>
<th>Movement</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>flip</td>
<td>reflection</td>
</tr>
<tr>
<td>slide</td>
<td>translation</td>
</tr>
<tr>
<td>turn</td>
<td>rotation</td>
</tr>
</tbody>
</table>

translation Sliding a figure from one position to another without turning or flipping the figure.

trapezoid A quadrilateral with exactly one pair of parallel sides.

triangle A polygon with three sides and three angles.

unit Any standard object or quantity used for measurement.

Grams, pounds, liters, gallons, inches, and meters are all units.
U.S. Customary System A system of measurement used almost exclusively in the United States.

Pounds, quarts, and feet are units in the U.S. Customary System.

vertex (Plural: vertices) A point of an angle, polygon, or polyhedron where two or more lines, rays, or segments meet.

![One vertex of this cube is colored. A cube has eight vertices.](image)

vertical Upright; perpendicular to horizontal.

![vertical line](image) ![not vertical lines](image)

volume The amount of space a solid shape occupies. Volume is measured in cubic units.

![This rectangular prism is 3 units wide, 3 units high, and 4 units deep. Its volume is 3 \cdot 3 \cdot 4 = 36 cubic units.](image)

whole numbers All the numbers in this sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

The number 35 is a whole number, but 35\frac{1}{2} and 3.2 are not.

Whole numbers are the counting numbers and zero.
Abbreviations

- a.m., 75–76
- Celsius (°C), 71
- centimeters (cm), 85
- cups (c), 176
- Fahrenheit (°F), 71
- feet (ft), 83
- fluid ounces (fl oz), 176
- gallons (gal), 176
- grams (g), 360
- inches (in.), 83
- kilograms (kg), 360
- kilometers (km), 85
- liters (L), 177
- meters (m), 85
- miles (mi), 83
- milliliters (mL), 178
- millimeters (mm), 85
- remainders (R), 246
- yards (yd), 83

See also Symbols and signs

Activities

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angles</td>
<td></td>
</tr>
<tr>
<td>measuring by folding paper</td>
<td>380–381</td>
</tr>
<tr>
<td>real-world examples of</td>
<td>99</td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>estimating</td>
<td>518–519</td>
</tr>
<tr>
<td>Decimals</td>
<td></td>
</tr>
<tr>
<td>money manipulatives and calculator</td>
<td></td>
</tr>
<tr>
<td>to display</td>
<td>181–183</td>
</tr>
<tr>
<td>on number line</td>
<td>476</td>
</tr>
<tr>
<td>stopwatch display</td>
<td>186</td>
</tr>
<tr>
<td>Equations, solving</td>
<td>557</td>
</tr>
<tr>
<td>estimating area</td>
<td>518–519</td>
</tr>
<tr>
<td>Experimental probability, 468–469</td>
<td></td>
</tr>
<tr>
<td>Fraction manipulatives, 419–423</td>
<td></td>
</tr>
<tr>
<td>Geometric solids, models of, 463</td>
<td></td>
</tr>
<tr>
<td>Graphic display of information, 283–285</td>
<td></td>
</tr>
<tr>
<td>Graphing on coordinate grid, 378</td>
<td></td>
</tr>
<tr>
<td>Line of symmetry, 368</td>
<td></td>
</tr>
<tr>
<td>Number line, decimals on, 476</td>
<td></td>
</tr>
<tr>
<td>Percent, 235</td>
<td></td>
</tr>
</tbody>
</table>

See also Investigations; Warm-up problems; Word problems

- **Addition**, 1–2
 - addends, 1
 - associative property of, 207
 - columns of numbers with regrouping, 68–69, 236–237
 - commutative property of, 2
 - of decimals, 199–200, 228–229
 - of fractions
 - with common denominators, 495–496
 - with different denominators, 549, 552
 - manipulatives to illustrate, 421
 - of mixed numbers, 552
 - identity property of, 2
 - missing numbers in, 4, 6–7, 45–46, 102–103
 - of mixed numbers, 552
 - of money amounts, 28–29, 31–32
 - of more than three-digit numbers, 236–237
 - multiplication as repeated, 115–116
 - regrouping, 31–32
 - in Roman numeral formation, 564–565
 - subtraction as inverse of, 22
 - sums, 1
 - symbol for, +, 1
 - of three-digit numbers, 52–53
 - of three-digit numbers, more than, 236–237

- **Warm-up problems**
 - missing-number problems, 102*, 264*, 318*
 - money amounts, 404*
 - sequences, 499*
Addition (cont.)
word problems
“equal groups,” 224–226
missing addends, 45–46
“some and some more” pattern, 2–3, 45–46
“Add up,” in subtraction, 22, 48–49, 64–65
Alternating sequences, 488*
Altitude (height) of triangle, 499–500
Angles, 97
activities, 99
cute, 98, 363
degrees, measuring by, 379–381
measuring, 379–381
naming, 97–98
obtuse, 98, 363
real-world examples of, 99
regular polygons and, 294
right (See Right angles)
right triangles and, 363
straight, 379–380
triangles, classifying by, 363–364
vertex (vertices) of, 97–98
Answers
division
checking, 237, 299–300, 304–305
ending with zero, 334–335
one-digit, 237
remainders, 245–247, 318–319
three-digit, 355–356, 372–374
two-digit, 298–300, 304–305, 318–319
zeros in three-digit, 372–374
estimating (See Estimation)
simplifying, 529–530
in surveys, 332–333
Approximation, 518
See also Estimation
Area, 132
estimating, 517–518
formulas for, 499–500
as model of multiplication, 132–133
of rectangles, 132–133, 165*, 499–500
of squares, 132–134, 500
of triangles, 499–500, 517–518
units of, 132–134
Array, 131–132
Associative property of addition, 207
Associative property of multiplication, 207
Average, 445–446, 449

B
Bar graphs, 280–281, 284
Base 5 number system, 566–567

Base ten blocks, 186
Base 10 number system, 566
Base and exponents, 291
Base of triangle, 499–500
Bias, in surveys, 332
Borrowing. See Regrouping

C
Calculators, 181–183
Calendars, 250–251
months of year, 18–19, 250–251
number of days in each month, 250–251
warm-up problems, 24*, 31*, 189*,
236*, 351*, 441*, 470*, 479*, 504*
See also Time
Capacity, 176–178
See also Volume
Carrying. See Regrouping
Celsius (C), 71–72
Center of circle, 88
centimeters (cm)
cubic, 513–514
millimeters (mm) versus, 84–85, 322–324
square, 133–135
as unit of length, 84–85
Central tendency, measures of
mean (average), 449
median, 449–450
mode, 450
Cents, ¢
converting to dollars, 157, 458–459
as form of money, 157–158
sales tax, 388–389
symbol for, ¢, 157, 458
word problems, sales tax, 388–389
See also Coins; Money
Centuries, 251
Chance, 466, 468
Change back from money transactions,
260*, 303*, 389, 517*
Charts
calendar (See Calendars)
hundred number chart, 48*, 55*, 64*,
71*, 79*, 87*, 96*
pie (See Circle graphs)
Checking answers
in addition problems, 57
in division problems, 237, 299–300,
304–305
in subtraction problems, 22, 49
Circle graphs, 280, 282–283, 285
Circles
drawing, with compasses, 88–89
fractions of, 112, 286*, 392*, 408*, 433*
as plane figures, 453, 462
radius (radii) of, 88–89
Classification
of quadrilaterals, 429–430
of triangles, 363–364
Clocks
elapsed time and, 92*, 116
reading time from, 75–76
See also Time
Clockwise, 351
Closed-option surveys, 331
Coding, 276*, 298*
Coins
subtracting money amounts and, 260*, 303*, 517*
tables and, 13*, 21*, 28*, 35*
See also Money
Commas
in four-digit numbers, 145n
place value and, 145–147
Common denominators, 495, 537–538
fractions, in adding and subtracting, 495–496
renaming fractions to, 533–534, 537–538
Common multiples, 6*, 71*, 79*, 87*, 255*
Common years, 250, 449*, 470*
Commutative property
of addition, 2
of multiplication, 120–121
Comparisons
of decimals, 188, 421–422, 425–426
of fractions
manipulatives to illustrate, 420
pictures to illustrate, 92, 232, 260–261
of lengths, 359*
of money amounts, 14
using number lines, 42–44
of percents to one half, 234
symbols for, >, <, =, 42
of whole numbers, 42–44
in word problems, 136–137
Compasses, 88–89
Computation, mental. See Mental math
Cones
drawing, 462
as geometric solid, 453–454, 462–463
nets of, 463
Congruence, 260
of figures, 309–310, 342–344
transformations and, 342–344
Constructing
angles, by folding paper, 380–381
nets of geometric solids, 463
Conversion
from base 5 to base 10, 566–567
from base 10 to base 5, 566–567
of decimals to fractions, 421–423
of fractions
to decimals, 421–423
to percents, 232, 234–235, 421
of improper fractions
to mixed numbers, 484–485
to whole numbers, 484–485
within metric system
units of capacity, 177–178
units of length, 85
of mixed numbers to improper fractions, 484–485
of percents to fractions, 232, 234–235, 421
of units of time, 76, 313*
within U.S. Customary System
units of capacity, 176–177
units of length, 83
Coordinate grid (plane), 378
Coordinates, 378
Cost, total, 388–389
Counterclockwise turns, 351
Counting, 9–10
by halves, 199*
by hundred thousands, 542
by multiples, 1*, 6*, 64*, 79*, 255*, 255–256, 313, 355*, 372*
number circle counting pattern, 17*, 60*, 68*
Counting numbers, 24
Counting patterns, 9–10
Cubes
drawing, 462
as geometric solids, 453–454, 462–463
as manipulatives (See Dot cubes (dice))
 nets of, 463
volume of, 513–515
Cubic numbers, 291, 525*
Cubic units, 513–516
Cups (c), 176
Cylinders, 453–454
D

Data
collecting, 331–333
displaying
using bar graphs, 280–281, 284
using circle graphs, 280, 282–283, 285
using line graphs, 280, 282, 284–285
using pictographs, 280–281, 283–284
using pie graphs, 280, 282–283, 285
using schedules, 471
See also Charts; Drawing; Graphs; Tables

Dates, writing, 19
See also Calendars

Days
in each month, 18, 250–251
warm-up problems, 31*, 351*, 441*, 504*

Decades, 251

Decagons, 295

Decimal points
adding decimals and, 199–200, 228–229
adding money amounts and, 93
alignment, in addition and subtraction, 199–200, 228
dividing money amounts and, 356
money and, 93, 157–158, 356
place value and, 424–426
subtracting decimals and, 199–200, 228
symbol for, ., 93

Decimals, 178, 232
activities
money manipulatives and calculators, 181–183
stopwatches, 186
adding, 199–200, 228–229
in capacity measurement, 178
comparing, 188, 421–422
converting to fractions, 421–423
dividing money amounts, 356
as money amounts, 157, 458–459
multiplying
by ten, one hundred, and one thousand, 396–397
three-digit numbers by two-digit numbers, 526
naming, 184–188
on number lines, 474–476
place value in hundredths, 228–229, 392, 424–426
tenths, 228–229, 392, 424–426
thousandths, 392–393, 424–426

Decimals (cont.)
reading, 184–185
sales tax and, 388–389
subtracting, 199–200, 228–229
word problems and, 388–389
writing with digits and words, 184–185

Decryption, 276*, 298*

Degrees, °, 351
in angle measurement, 379–381
in turn (rotation) measurement, 351–352
of temperature, 71–72

Denominators, 92
common, 495, 537–538
in adding and subtracting fractions, 495–496
renaming fractions to have, 533–534, 537–538
different
adding fractions with, 549, 552
subtracting fractions with, 550, 553
equivalent fractions and, 504–505, 533–534
fractions equal to one, 479–480
in fractions of a set, 347
improper fractions, 412–413
naming decimals and, 184–185
reducing fractions and, 521–522

Diagrams
for addition stories, 3
for decimal place value, 228, 424, 561–562
for “fraction of a group” problems, 327–328, 442
graphs (See Graphs)
for ordinal numbers, 17–18
for place value, 13–14, 145–146, 228, 424, 561–562
for probability experiments, 468–469
for problems about comparing, 136
for “some went away” problems, 107

Diameter, 89

Dice. See Dot cubes (dice)

Difference, 21
missing numbers and, 347*
word problems
about comparing, 136–137
“how many more/fewer,” 137–138
larger-smaller-difference, 137–138, 251
later-earlier-difference, 251
See also Subtraction

Digital form for writing time, 75–76

Digits, 10
in decimal addition and subtraction, 199–200, 228
in division, 509–510
See also Numbers
Dimes, 161–162
See also Money
Directions of the compass, 352
Distance, 39–40, 458*
See also Length
Distributive property of multiplication, 500–501
Dividends, 303, 529*
Division
alignment of digits and, 509–510
answers
checking, 237, 299–300, 304–305
ending with zero, 334–335
one-digit, 237
three-digit, 355–356, 372–374
two-digit, 298–300, 304–305, 318–319
zeros in three-digit, 372–374
of decimals, 356
dividends, 303
divisors, 303
“equal group” word problems and, 224–226, 298–299, 408–409
factors and, 212–213
facts and fact families, 217
of money amounts, 356
by multiples of ten, 509–510
multiplication as inverse of, 212
multiplication tables and, 212–213
one-digit with remainder, 245–247
products and, 212–213
quotients, 303
reminders, 318–319
symbols for, ÷, —, 216, 303
by ten, 488–489
by two-digit numbers, 545–546
warm-up problems, 338*, 529*
word problems involving, 224–226, 298–299, 408–409
Division bar, —, 216, 303
Division box, —, 216, 303
Division sign, ÷, 216, 303
Divisors, 303
Dollars, $, 157
converting to cents, 157–158, 458–459
fractions of, 161–162, 232–233
percents of, 232–233
rounding to nearest, 80–81
See also Money
Dot cubes (dice), 1–2, 6, 21, 115
“Double and half” method, mental math, 453*, 458*, 462*
Doubling, mental math, 449*, 453*, 458*
Drawing
with compasses, 88–89
cones, 462
cubes, 462
fractions, pictures of, 111–112
geometric solids, 462
rectangles, 88
with rulers (See Rulers)
triangles, 87
See also Diagrams
E
Edges, 454
Elapsed-time word problems, 92*, 106*, 116–117
Encryption, 276*, 298*
Endpoints, 96
English system. See U.S. Customary System
rate problems as, 264–265, 276–277
Equality
in comparing numbers, 42
fractions equal to one, 479–480
fractions equal to one half, 480
of numbers, 42–44
renaming fractions and, 533–534, 537–538
Equal sign, =, 42
Equations, 556
activities, 557
addition (See Addition)
with decimals (See Decimals)
division (See Division)
finding missing factors and, 190–191, 212–213
formulas, 499–501, 514, 517
multiplication (See Multiplication)
one-step solutions (See Missing numbers)
with percents (See Percents)
solving, 287, 338–339, 556–557
subtraction (See Subtraction)
two-step solutions, 287
See also Word problems
Equilateral
quadrilaterals, 429–430
triangles, 363
Equivalent fractions, 504–505, 533–534
Estimation, 272
 of area, 517–519
 of products, 400–401, 433–434
 of percents, 233
 of quotients, 434
 using multiples of ten, 509–510
 of sums, 272–273
 See also Rounding
Evaluating expressions, 492–493
Even numbers, 35–36
 counting by twos, 1*
 hundred number chart, 48*, 55*, 64*, 71*, 79*, 87*, 96*
 mental math, 525*
 odd numbers versus, 36
Exact numbers, 79–80
Exchanging, 61–62
 See also Regrouping
Experimental probability, 468–469
Exponents, 291
Expressions, 492–493
Faces of geometric solids, 454
Fact families
 addition and subtraction, 22
 division and multiplication, 217
Factors, 120, 256–257
 exponents and, 291
 missing, 190–191, 212–213
 in multiplication tables, 120, 212–213, 256–257
 multiplying three or more, 290–291
Facts, memorizing, 124, 141–142, 169
Fahrenheit (F), 71
Feet (ft), 83, 513–516
Feet, cubic (ft³), 513–516
Fibonacci sequence, 499*
Figures. See Geometric figures
Fives
 counting by, 75–76
 in multiplication facts, 124
 multiples of, 64*
Flipping (reflecting) geometric figures, 343
Fluid ounces (fl oz), 176, 359
Formulas, 499–501
 for area, 499–500
 for perimeter, 500–501
 for volume, 514
Fractions, 92–93, 232
 adding, 421
 with common denominators, 495–496
 with different denominators, 549, 552
 circle graphs and, 280, 282–283, 285
 coin values as fractions of dollar, 93, 161–162
 Fractions (cont.)
 common denominators, 495–496, 533–534, 537–538
 converting
 to decimals (and vice versa), 421–423
 to percents (and vice versa), 232, 234–235, 421
 counting by, 199*, 216*
 denominators (See Denominators)
 of dollars, 458–459
 drawing pictures to represent, 111–112
 equal to one, 479–480
 equal to one half, 480
 equivalent, 504–506, 533–534
 of geometric figures, 165*, 286*, 392*, 408*, 433*
 of a group, 327–328, 441–442
 improper (See Improper fractions)
 of inches, 172–173
 of line segments, 224*, 245*, 268*
 manipulatives, 419–423
 mental math involving, 441*, 445*, 492*, 495*, 499*, 504*, 509*, 517*, 521*
 mixed numbers (See Mixed numbers)
 multiplying, 505–506, 533–534
 names for one, 505
 naming, 92–93, 165–166, 184–185
 on number lines, 165–166
 numerators (See Numerator)
 ordinal numbers and, 92
 picturing, 111–112, 280, 282–283, 285
 pie graphs and, 280, 282–283, 285
 reducing, 521–522
 remaining, 286–287
 renaming, 533–534, 537–538
 representing with pictures, 111–112, 280, 282–283, 285
 on rulers, 172–173
 sequences of, 199*, 206*, 216*, 437*, 521*, 541*, 552*
 of sets, 347–348
 simplifying, 529–530
 of solids, 172*
 subtracting, 421
 with common denominators, 496
 with different denominators, 550, 553
 of a whole, 232–233
 word problems, fraction of a group, 327–328, 441–442
 writing, 93
 See also Decimals
Freezing point of water, 71–72
Full turn, 360°, 351
G

Gallons (gal), 176

Geometric figures
 - congruence of, 309–310, 342–344
 - cubes, 453–454, 462–463, 513–515
 - perimeter of, 86, 133, 500–501
 - polygons, 294–295
 - quadrilaterals, 295, 384–385, 429–430
 - rectangles (See Rectangles)
 - rhombuses, 429–430
 - sequences of, 334*
 - similarity of, 309–310
 - solids, 453–454, 462–463, 513–516
 - squares, 87–88, 295, 429–430, 500
 - transformations of, 342–344
 - triangles (See Triangles)

Geometric formulas. See Formulas

Geometric solids. See Solids

Geometric transformations
 - reflections (flips), 343
 - rotations (turns), 343–344
 - translations (slides), 343

Geometry, defined, 342

Grams (g), 360

Graphing, 376–377

Graph paper, 132–135, 517–518

Graphs
 - bar, 280–281, 284
 - circle, 280, 282–283, 285
 - to display data, 280–285, 376–377
 - to display functional relationships, 376–377
 - line, 280, 282, 284–285
 - pictographs, 280–281, 283–284
 - pie, 280, 282–283, 285
 - reading, 280–285
 - See also Data

Gravity, 360n

Greater than, >, 42–44

Grid, coordinate, 378

Grid paper, 132–135, 517–518

H

Half
 - comparing percents to, 234
 - as fraction, 92n
 - fractions equal to, 480
 - mental math involving
 - “double and half” method, 453*, 458*, 462*
 - halving, 412*, 415*, 441*, 445*
 - of ten (5), 424*, 429*, 433*, 437*
 - of a number, 234–235
 - Half lines (rays), 96–97

Half turn, 180°, 351

Height
 - of triangles, 499–500
 - volume and, 514

Hexagons, 295
 - tessellations and, 384–385

Hours, 495*
 - “How many more/fewer” word-problem pattern, 137–138

Hundred millions
 - in place value, 146–147, 151–152
 - rounding to nearest, 541–542

Hundred number charts, 48*, 55*, 64*, 71*, 79*, 87*, 96*

Hundredths
 - in place value, 228–229
 - on number lines, 474–476

Hyphens, writing numbers and, 24–25

I

Identity property
 - of addition, 2
 - of multiplication, 120–121

Improper fractions, 412–413
 - converting to mixed or whole numbers, 484–485, 529–530

Inches (in.), 83
 - cubic (in.³), 513–515
 - square (in.²), 134

Inequalities. See Greater than, >; Less than, <

Information, finding, to solve word problems, 338–339

Intersecting lines, 97

Inverse operations
 - addition and subtraction, 22
 - multiplication and division, 212

Investigations
 - area, 132–134
 - data collection and surveys, 331–333
 - decimals, 181–188
 - equations, solving, 556–557
 - fractions with manipulatives, 419–423
 - graphing, 376–378
 - graphs, 280–285
 - length, 83–85
 - multiplication patterns, 131–132
 - number lines, 39–44
 - percents, 232–235
Investigations (cont.)
 perimeter, 86
 probability, 466–469
 solving equations, 556–557
 square roots, 134–135
 squares, 134–135
 surveys, 331–333
 volume, 513–516
Isosceles triangles, 363

J
Jingle, number of days in month, 250–251

K
Kilograms (kg), 360
Kilometers (km), 83, 85

L
Labels, in graphic displays, 281–282
Larger-smaller-difference word problems, 137–138
Later-earlier-difference word problems, 251
Leap years, 18, 250, 470*, 479*
Length
 in area formula, 499–500
 converting units of, 484*, 549*
 investigating, 83–85
 number lines and, 39–40, 474–476
 plane figures and, 453, 462
 rulers and, 224*, 245*, 268*, 359*
 units of
 metric system, 83–86
 U.S. Customary System, 83–84
 in volume formula, 514
See also Area; Perimeter
Lesson reference numbers, 7n
Less than, <, 42–44
Letters as variables or unknowns
 in equations, 556–557
 in expressions, 492–493
 in formulas, 499–500
Linear measurement. See Length
Line graphs, 280, 282, 284–285
Lines, 39, 96
 intersecting, 97
 naming, 208
 in number lines, 39
 parallel, 97
 perpendicular, 97
 symbol for, ↔, 208
Line segments. See Segments
Lines of symmetry, 367–369
Liquid measure, 176–178, 424*, 492*
Liters (L), 177–178

M
Manipulatives
 base ten blocks, 186–188
 calculators, 181–183
 coins (See Coins; Money)
 compasses, 88–89
 dot cubes (dice), 1–2, 6, 21, 115
 for fractions, 419–423
 graph/grid paper, 132–133
 marbles, 2–3, 45–46
 for measuring capacity, 176–177
 mirrors, 368
 money as, 561–562 (See also Money)
 paper (See Paper)
 rulers, 83–86, 88, 172–173
 spinners, 466–467
 toothpicks, 172–173
Marbles, 2–3, 45–46
Mass
 metric units of, 360
 versus weight, 360n
See also Weight
Mean, 445–446, 449
Measurement
 of angles, 351–352, 380–381
 of capacity, 176–178
 of central tendency, 445–446, 449–450
 of length (See Length)
 linear (See Length)
 of liquid capacity, 176–178, 424*, 492*
 of mass, 360
 of temperature, 71–72
 of turns, 351–352
 of volume, 513–516, 537*
 of weight, 359–360
See also Metric system; U.S. Customary System
Median, 449–450
Memorization of multiplication facts, 124, 141–142, 169
Mental math (A variety of mental math skills and strategies are developed in the Warm-up activities at the beginning of every lesson. With few exceptions, these skills and strategies have not been indexed.)
 “double and half” method, 453*, 458*, 462*
 doubling, 449*, 453*, 458*, 462*
 halving, 441*
 multiplying by multiples of ten and one hundred, 194–195
 multiplying round numbers, 400–401
Meters (m), 83–85
Metersticks, 83
Metric system
decimal number lines and, 474–476
units of
area, 132–133
capacity, 177–178
length, 83–85
liquid measure, 177–178
mass, 360
Miles (mi), 83
Miles per hour, 264–265
Milliliters (mL), 178
Millimeters (mm), 84–85, 322–323
Millions, in place value, 146–147
Mills, 424–425
Minus sign, –, for writing negative numbers, 41
Minutes, 75–76
Mirror images, 368
Missing-digit problems
addition, 1*, 102*, 264*, 318*, 396*
multiplication, 203*
subtraction, 347*
Missing numbers
in addition, 4, 6–7, 45–46, 56–57, 102–103
in “equal groups” problems, 224–226, 241–242
in multiplication, 190–191, 212–213, 264–265, 276–277
in rate word problems, 264–265, 276–277
in subtraction, 48–49, 64–65, 102–103
See also Sequences
Mixed numbers, 156–157
adding, 552
converting to improper fractions and vice versa, 484–485
on number lines, 165–166, 474–475
picturing, 412–413
reading, 156–157, 165–166
representing with pictures, 412–413
simplifying, 529–530
subtracting, 496, 553
writing, 156–157
See also Fractions
Mode, 450
Models
of cubes, 513–514
of geometric solids, 462–463
of multiplication, 131–133
Money
adding amounts of, 28–29, 93, 404*
decimal points and place value, 199–200
with regrouping, 31–32
of three-digit numbers, 52–53
base 5 number system and, 566–567
Money (cont.)
change back, 389
coins, 161–162
comparing amounts of, 14
converting cents to dollars, 157–158, 458–459
dividing amounts of, 356
fractions of dollars, 161–162
manipulatives, 181–183 (See also Coins)
multiplying amounts of, 526
naming amounts of, 14
percents of a dollar, 232–233
picturing, 13–14, 28
place value and, 13–14, 199–200, 424–426, 561–562
reading amounts of, 14
representing with pictures, 13–14, 28
rounding amounts of, to nearest dollar, 80
sales tax, 388–389
sequences involving, 228*, 533*
subtracting amounts of
decimal points and place value, 199–200
with regrouping, 60–62
warm-up problems, 260*, 303*, 363*, 404*, 517*
symbols for, $, c, 157, 458
total price/cost, 388–389
writing amounts of, 157–158, 458–459
Month/day/year form, 19
Months, 18–19, 24*, 236*, 250–251, 441*, 504*
Multiples, 255–256
dividing by multiples of ten, 509–510
in multiplication tables, 256
multiplying by multiples of ten, one hundred, and one thousand, 194–195, 313–314, 396–397
Multiplication, 115
associative property of, 207
commutative property of, 120–121
of decimals, 194–195, 313–314, 396–397, 526
distance/time problems, 458*
distributive property of, 500–501
division as inverse of, 212
in “equal groups” word problems, 224–226, 241–242, 264–265
estimating answers, 433–434
fact families, 217
Multiplication (cont.)
factors, 290–291
facts, memorization of, 125, 141–142, 169
of fractions, 505–506, 533–534, 537–538
mental math, 195, 400–401
missing-number problems, 203*
models of
area, 132–133
arrays, 131–132
of money amounts, 526
multiples (See Multiples)
by multiples of one hundred, 194–195, 396–397
by multiples of ten, 194–195, 313–314, 396–397
by one hundred, 396–397
by one thousand, 396–397
partial products, 404–405
patterns, investigating, 131–132
products, 120
in rate word problems, 264–265, 276–277
as related to addition, 115–116
rounding and, 400–401
symbols for, × and ·, 115, 287
by ten, 313–314, 396–397
of three-digit numbers, 268–269, 525–526
Multiplication tables, 119–121
division and, 212–213
factors in, 212–213, 256

N
Naming
decimals, 184–186
lines and line segments, 208
percents of a dollar, 232–233
polygons, 294–295
renaming fractions, 533–534, 537–538
squares, parts of, 186–188
Negative numbers, 41
Nets of geometric solids, 462–463
Nickels, 161–162
See also Money
Nines
multiples of, 96*, 115*
in multiplication facts, memorization of, 141–142
Number cubes. See Dot cubes (dice)
Number lines, 39
decimals on, 474–476
fractions on, 165–166
investigating, 39–44
mixed numbers on, 165–166
Number lines (cont.)
negative numbers on, 41
positive numbers on, 41
rounding and, 79–80, 252
whole numbers on, 165–166
Numbers
comparing (See Comparisons)
decimal (See Decimals)
even, 35–36
exact, 80
fractions (See Fractions)
improper fractions, 412, 484–485, 529–530
missing (See Missing-digit problems; Missing numbers)
mixed (See Mixed numbers)
negative, 41
odd, 35–36
ordinal, 17–18
percents of (See Percents)
positive, 41
range of set, 450
Roman numerals, 563–565 (See also Warm-Ups in Lessons 91–120)
rounding, 79–80, 251–252, 475, 541–542
whole (See Whole numbers)
Number sentences, 1
Nerators, 92
in equivalent fractions, 504–505, 533–534
in fractions equal to one, 479–480
in fractions of a set, 347
in improper fractions, 412–413
naming decimals and, 184–185
reducing fractions and, 521–522

O
Obtuse angles, 98, 363
Obtuse triangles, 363
Octagons, 295
Odd numbers, 35–36
even numbers versus, 36
half of, 525*
sequences of, 35
One
fraction names for, 505
fractions equal to, 479–480, 505–506, 533–534
as multiplicative identity, 120–121
equivalent fractions and, 505–506, 533–534
in multiplication facts, memorization of, 124
reducing fractions and, 521–522
renaming fractions and, 533–534, 537–538
One-digit division with remainders, 245–247
Ones, in place value, 14, 145
Open-option surveys, 331
Operations, inverse
 addition and subtraction as, 22
 multiplication and division as, 212
Order of operations, 206–207
Ordinal numbers, 17–18
Ounces (oz), 359
Outliers, 450

P

Paper
 cutting and folding
 to create angle-measurement tool, 380–381
 to create cubes, 463
 to create fraction manipulatives, 419
 graph/grid paper
 area calculation and, 132–134
 area estimation and, 517–518
 squaring and, 134–135
Parallel lines, ||, 97
Parallelograms, 429–430
Parentheses, (), 206
 in coordinates, 378
 order of operations and, 206–207
Partial products, 404–405
Patterns
 addition (“some and some more”), 2–3, 45–46
 counting, 17*, 60*, 68*
 multiplication
 investigating, 131–132
 rate, 264–265, 276–277
 warm-up problem, 212*
 subtraction
 “how many more/fewer,” 137–138
 larger-smaller-difference, 137–138
 later-earlier-difference, 251
 “some went away,” 106–108
 tessellations, 384–385
 See also Sequences
Pennies, 161–162
 See also Money
Pentagons, 295
 See also Money
Percents, 232
 activities, 235
 chance and, 468
 comparing percents to one half, 234–235
 converting
 to fractions and vice versa, 232, 234–235, 421
 Percents (cont.)
 estimating, 233
 finding remaining percent of a whole, 234
 of a group, 234
 reading, 232
 symbol, %, 232
 warm-up problems, 313*, 338*, 462*, 529*, 533*, 537*, 541*, 545*, 549*, 552*
 writing, 232
Perfect cubes, 525*
Perimeter, 86
 area and, 133
 formulas, 500–501
 of rectangles, 86, 500–501
 of squares, 86, 500
Perpendicular lines, 97, 499
Pictographs, 280–281, 283–284
Pie charts/pie graphs, 280, 282–283, 285
Pints (pt), 176
Place value, 13–14
 in addition, 199–200
 commas and, 145–147, 151–152
 in decimals through thousandths,
 228–229, 392–393, 424–426
 money amounts and, 13–14, 199–200, 561–562
 in subtraction, 55–56, 199–200, 228–229
 in whole numbers through hundred millions, 13–14, 145–147, 151–152,
 228–229, 424–426, 541–542
Plane, coordinate, 378
Plane figures, 294, 462
 See also Angles; Circles; Geometric figures
Points
 on line segments, 97
 naming, on number lines, 39–41
Polygons, 294–295
Populations, 331
Positive numbers, 41
Pounds (lb), 359, 415*
Price, 388–389
Prisms, rectangular, 453–454
 nets of, 463
 volume of, 513–515
Probability, 466
 activities, 468–469
 chance and, 468
 spinners and, 466–467
Problem solving. See Solving equations;
 Warm-up problems; Word problems
Products, 120
 factors and, 120, 212–213
 in multiplication tables, 212–213
 partial, 404–405
See also Multiplication

Properties
 associative, of addition, 207
 associative, of multiplication, 207
 commutative, of addition, 2
 commutative, of multiplication, 120–121
 distributive, of multiplication, 500–501
 identity, of addition, 2
 identity, of multiplication, 120–121
 zero, of multiplication, 120–121

Pyramids, 453–454, 462–463

Q
Quadrilaterals
 classifying, 429–430
 parallelograms, 429–430
 as polygons, 295
 rectangles (See Rectangles)
 rhombuses, 429–430
 squares (See Squares)
 tessellations and, 384–385
 trapezoids, 429
Quarters (coins), 161–162, 470*, 474*, 479*, 484*, 488*
See also Money
Quarter turn, 90°, 351
Quarts (qt), 176
Quotients, 303
 See also Division

R
Radius (radii), 88–89
Range, 450
Rates, 264–265, 276–277
Rays, 96–97
Reading
 angles, 97–98
 clocks, 75–76
 decimals through thousandths, 184–186, 392–393
 division problems, 216–217
 fractions, 92–93, 165–166, 184–185
 lines and line segments, 208
 mixed numbers, 156–157, 165–166
 multiplication problems, 115
 number lines, 165–166
 numbers through hundred millions, 145–147, 151–152
 percents, 232
Reading (cont.)
 rulers, to nearest quarter inch, 172–173
 scales, 71–72, 172–173
 segments, 208
 square roots, 135
 tick marks, 71–72, 172–173
 time from a clock, 75–76
 whole numbers through hundred millions, 145–147, 151–152
Reasonableness, 272, 433–434
Rectangles
 area of, 132–134, 165*, 499–500
 congruence of, 310
 drawing, 88, 111
 as parallelograms, 429–430
 perimeter of, 500–501
 as plane figures, 453, 462
 as quadrilaterals, 295, 429–430
 representing equivalent fractions with, 504–505
 similarity of, 310
 squares as, 88, 429–430
 width of, 499–500
Rectangular prisms
 as geometric solids, 453–454
 nets of, 463
 volume of, 513–515
Reducing, 521–522
 in simplifying improper fractions, 529–530
 in simplifying mixed numbers, 529–530
 using manipulatives to illustrate, 420
Reflections of geometric figures, 343
Reflective symmetry, 367–368
Regrouping, 61
 in addition, 31–32, 68–69, 236–237
 in multiplication, 220–221
 in subtraction
 across zero, 189–190
 of numbers with more than three digits, 240–241
 of three-digit numbers, 127–128
 of two-digit numbers, 60–62
Regular polygons, 294–295
Remainders, 318–319
 in dividing by ten, 488–489
 in “equal group” word problems, 408–409
 in one-digit division, 245–247
 with three-digit quotients, 373–374
Remaining fractions, 286–287
Renaming fractions, 533–534, 537–538
Rhombuses, 429–430
Right angles, 98
 on clock faces, 119
 measurement of, 351–352, 379–380
Index

Right angles (cont.)
- in quadrilateral classification, 430
- right triangles and, 363
- symbol for, ∟, 98
- in triangle classification, 363
Roman numerals, 563–565 (See also Warm-Ups in Lessons 91–120)
Rotations of geometric figures, 343–344
Rounding, 79–80
- mental multiplication and, 400–401
to nearest
- ten, 79–80
- hundred, 195–196
- thousand, 251–252
- million, 541–542
ten million, 541–542
- hundred million, 541–542
- with number lines, 79–80, 252, 475
 See also Estimation
Rulers
- activities with, 83–85, 87–89, 476
- centimeter (cm), 84, 322–324, 474
- inch (in.), 83–84, 172–173
to measure segment lengths, 224*, 245*, 268*, 359*, 379*, 400*
- metersticks, 83–84, 476
- millimeter (mm), 322–324, 474
as model for segments, 97
Rules of sequences, 9–10

S

Sales tax, 388–389
Samples, 331
Scale, 71–72, 322–324
Schedules, 471
Seconds, 75
Sectors, 466
Segments, 39, 96–97
- intersecting, 97
- naming, 208
- parallel, 97
- perpendicular, 97
- real-world examples of, 99
- symbol for, —, 208
- warm-up problems, 224*, 245*, 268*, 359*
Sequences, 9–10
- alternating, 488*
- common multiples and, 309*
- cubed numbers, 525*
- doubling, 429*, 445*
even numbers, 35
- Fibonacci, 499*
Sequences (cont.)
- of geometric figures, 136*, 334*
- with geometric progression, 429*, 437*, 445*
- halving, 437*
- involving fractions, 199*, 206*, 216*, 521*, 541*, 552*
- missing multiples in, 115*
- of money amounts, 228*, 533*
- multiplication tables and, 119–121
- odd numbers, 35
- perfect cubes, 525*
- perfect squares, 127*, 134–136*, 145*, 156*, 396*
- square numbers, 127*, 134–136*, 145*, 156*, 396*
- triangular numbers, 384*
Sets, 347–348
Sides
- of angles, 97–98
- area and, 499–500
- polygon names and, 294–295
- quadrilateral classification and, 429–430
- triangle classification and, 363–364
Similar figures, 309–310
Simplifying fractions, 420, 521–522, 529–530
Sliding (translating) geometric figures, 343
drawing, 462
- edges of, 454
- faces of, 454
- vertices of, 454
- volume of, 513–516
Solving equations, 556–557
- one-step process (See Missing numbers)
two-step process, 287
- in word problems, 338–339
- “Some and some more” word problems, 2–3, 45–46
- “Some went away” word problems, 106–108
Space, three dimensional, 453, 462
Spatial relationships
- geometric transformations and, 342–344
- involving clock hands, 119*, 176*, 194*, 220*
Speedometers, 71–72
Spelling
- numbers from one to one hundred, 24
two-digit numbers, 24–25
Spheres, 172*, 453–454
Spinners, 466–467
Square centimeters (cm²), 133–134
Square corners, as related to right angles, 87, 98
Square inches (in.²), 134
Square numbers, 127*, 134–136*, 145*, 156*, 291, 396*, 412*
Square roots, 134–135, 161*
Squares, 186–188, 295
 area of, 500
 as parallelograms, 429–430
 perimeter of, 86, 500
 as quadrilaterals, 429–430
 as rectangles, 88, 429–430
Squares, perfect, 127*, 134–136*, 145*, 156*, 291, 396*, 412*
Square units
 for area measurement, 132–134
 square centimeters (cm²), 133–134
 square inches (in.²), 134
 square yards (yd²), 514
Square yards (yd²), 514
Stopwatches, 186
Story problems. See Word problems
Straight angles, 379–380
Straightedges. See Rulers
Subtraction, 21–22
 across zero, 189–190
 borrowing (regrouping), 60–62, 127–128
 change back from money transaction, 260*, 303*, 389, 517*
 checking answers, 22
 of decimals, 199–200, 228–229
 fact families, 22
 of fractions
 with common denominators, 496
 with different denominators, 550, 553
 using manipulatives, 421
 in “how many more/fewer” problems, 137–138
 in larger-smaller-difference problems, 137–138
 in later-earlier-difference problems, 251
 with missing numbers, 21*, 48–49, 64–65, 102–103, 347*
 of mixed numbers
 with common denominators, 496
 with different denominators, 550, 553
 of money amounts, 60–62, 199–200, 363*, 404*
 of numbers with more than three digits, 240–241
 patterns, 106–108, 224
 place value and, 56
 in problems about comparing, 136–137
 with regrouping, 60–62, 127–128
 in Roman numeral formation, 564–565
 in “some went away” problems, 106–108
 symbol for, –, 21
 of three-digit numbers, 56, 127–128
 of two-digit numbers, 55–56, 60–62
Sums, 1
 Fibonacci sequence and, 499*
 missing digits in, 264*
 See also Addition
Surveys, 280–281, 331–333
 bias, 332
 closed-option questions, 331
 open-option questions, 331
 pictograph displays of data, 280
 populations, 331
 samples, 331
Symbols and signs
 addition, +, 1
 bar notation, —
 for division, 216, 303
 for fractions, 92
 for line segments, 208
 cent, ¢, 157, 458
 of comparison, >, <, =, 42
 decimal point, ., 93
 degree, °, 351
 division bar, —, 216, 303
 division box, ÷, 216, 303
 division sign, ÷, 216, 303
 dollar, $, 157
 equal sign, =, 42
 fraction bar, —, 92
 greater than symbol, >, 42
 less than symbol, <, 42
 line, —, 208
 line segment, —, 208
 minus sign, –, 21
 multiplication symbols, ×, ·, 115, 287
 parallel, ||, 97
 parentheses, (), 206
 percent, %, 232
 plus sign, +, 1
 right angle, ÷, 98
 segment, —, 208
 square root, √, 135
 subtraction, –, 21
 times sign, ×, 115
 triangle, Δ, 342
 See also Abbreviations
Symmetry, lines of, 367–368
T
Table, 470–471
 investigating, to display relationships, 376–377
 multiplication, 119–121, 212–213, 256
 probability, 468–469
 warm-up problems, coins, 13*, 21*, 28*
 See also Data display
Tally marks, 332
Nodes, 388–389
Temperature, 71–72
Tendency, central. See Central tendency, measures of
Ten millions, in place value, 146–147, 152
Tens
 dividing by, 488–489, 509–510
 mental math, multiplying by, 195, 408
 multiplying by multiples of, 194–195, 313–314, 396–397, 408
 in place value, 14
 rounding to nearest, 79–80
Ten thousands, in place value, 145–147, 151–152
Tenths, in place value, 228–229, 474–476
Tessellations, 384–385
Thermometers, 71–72
Thousands
 mental math, multiplying by, 408
 multiplying by multiples of, 408
 in place value, 145–147, 151–152
 rounding to nearest, 251–252
Thousandths, in place value, 392–393
Three-digit numbers
 adding, 52–53, 236–237
 as division answers, 355–356, 372–374
 multiplying, 268–269, 525–526
Tick marks, 39, 71–72
 on inch rulers, 172–173
 on number lines, 39–43
Tiling (tessellations), 384–385
Time
 clocks, 75–76, 92*, 176*, 194*, 220*
 daylight saving time, 495*
 elapsed, 92*, 106*, 116–117, 322*, 441*
 line graphs and, 280, 282, 284–285
 percent and, 313*
 rate word problems, 264–265, 276–277, 458*
See also Calendars
Tons, 359, 415*
Tools. See Manipulatives
Total price/cost, 388–389
Transformations, 342–344
 reflections (flips), 343
 rotations (turns), 343–344
 translations (slides), 343
Translations of geometric figures, 343
Trapezoids, 429
Triangles
 acute, 363
 angles in, 363–364
 area of, 499–500, 517–518
Triangles (cont.)
 bases of, 499–500
 classifying by angles and sides, 363–364
 congruence of, 309–310, 342–344
 drawing, 87
 equilateral, 363
 estimating area of, 517–518
 formula for area of, 499–500
 height (altitude) of, 499–500
 isosceles, 363
 obtuse, 363
 as plane figures, 453, 462
 as polygons, 294
 right, 363
 scalene, 363
 similarity of, 309–310, 342–344
 symbol for, Δ, 342
 tessellations involving, 384–385
 transformations of, 342–344
Triangular numbers, 384*, 412*
Turning (rotating) geometric figures, 343–344
Turns, measuring, 351–352
Two-digit numbers
 subtracting, 55–56, 60–62
Two-step problems, 287, 437–438
 finding an average, 445–446
 about fractions of group, 441–442
U
Units of measurement. See Measurement
Unknowns and variables, 492–493, 499–501, 556–557
U.S. Customary System, units of
 area, 132–134
 capacity, 176–178
 length, 83–84
 liquid measure, 176–178
 volume, 513–516
 weight, 359–360
V
Vertex (vertices), 295
 of angles, 97–98
 of geometric solids, 454
 of polygons, 295
Volume, 513–516, 537*
Warm-up problems (cont.)

percents, 266*, 313*, 338*, 392*, 408*, 433*, 462*, 545*
perfect cubes, 525*
perfect squares, 127*, 136*, 145*, 156*, 161*, 396*, 412*
ratios (length), 224*, 245*, 268*, 359*, 400*

sequences
alternating, 488*
common multiples and, 309*
of cubed numbers, 525*
decimals, 533*
doubling, 429*, 445*
Fibonacci, 499*
of geometric figures, 136*, 334*
with geometric progression, 429*, 437*, 445*
halving, 437*
involving fractions, 199*, 206*, 216*, 521*, 541*, 552*
multiples in, 115*
of money amounts, 228*, 533*
of perfect cubes, 525*
of perfect squares, 127*, 136*, 145*, 156*, 396*
of triangular numbers, 384*
spatial relationships, 176*, 194*, 220*
squares, perfect, 127*, 136*, 145*, 396*, 412*
subtraction, money amounts, 260*, 303*, 363*, 404*, 517*
tables, 13*, 21*, 28*, 35*
decryption, 276*, 298*
division, 338*
elapsed time, 92*, 106*
encryption, 276*, 298*
even numbers, 1*, 45*, 52*, 294*
fractions
of circles, 286*, 392*, 408*, 433*
counting by, 199*, 206*, 216*
of rectangles, 165*
of spheres, 172*
hundred number chart, 48, 55*, 64*, 71*, 79*, 87*, 96*
leap years, 470*, 479*
length, 474*, 484*, 549*
liquid measurement, 424*, 492*
missing numbers
addition, 102*, 264*, 318*
subtraction, 347*
money amounts
addition, 404*
sequences, 228*, 533*
subtraction, 363*, 404*
multiplication
days in months, 441*
distance and time, 458*
factors and products, 203*
weight, 363*
writing multiplication fact with 4
digits in order, 212*
numbered circle counting patterns, 17*, 60*, 68*
odd numbers, 1*, 294*

Whole numbers, 24–25
adding (See Addition)
comparing, 42–44, 136–137
dividing (See Division)
evend and odd, 35
multiplying (See Multiplication)
on number lines, 39–44
routines (See Rounding)
subtracting (See Subtraction)
Whole numbers (cont.)

writing
 with digits, 10
 with words, 24–25

Width

 in area formula, 499–500
 of plane figures, 453, 462
 in volume formula, 514

See also Area; Perimeter

Word problems

 addition pattern, 3, 45–46, 224
 addition stories, 2–3, 45–46
 average, 445–446
 chance and probability, 466–468
 about combining, 2–3, 45–46
 about comparing, 136–138
 diagrams, use of, 3, 107, 136, 327–328, 442
 division, 298–300, 304–305, 334–335
 elapsed-time, 116
 “equal groups,” 224–226, 241–242,
 264–265, 276–277, 298–299,
 408–409
 finding information to solve, 338–339
 fractions, 92–93, 496
 of a group, 327–328, 441–442
 graphing relationships, 376–378
 “how many more/fewer” pattern, 136–138
 larger-smaller-difference pattern, 136–138
 later-earlier-difference pattern, 251
 missing addends in, 45–46
 multiplication
 “equal group,” 203, 224–226, 241–242,
 264–265, 276–277
 rates, 264–265, 276–277
 probability, 466–467
 problems about comparing, 136–138
 rate, 264–265, 276–277
 remainders, 408–409
 sales tax, 388–389
 “some and some more” stories, 2–3, 45–46
 subtraction pattern, 106–108, 136–138, 224, 251
 subtraction stories
 “how many more/fewer” pattern, 136–138
 larger-smaller-difference pattern, 136–138
 later-earlier-difference pattern, 251
 problems about comparing, 136–138
 “some went away,” 106–108
 with two-digit numbers, 55–56, 60–61
 tables, use of, 470–471
 three-digit numbers, adding, 52–53
 two-step, 437–438, 441–442

Writing

 decimals, 184
 digits, 10
 fractions, 92
 mixed numbers, 156–157
 money amounts, 157–158, 458–459
 numbers, place value and, 13–14, 145–147, 151–152
 percents, 232
 time, 75–76
 whole numbers, 24–25

Y

 Yards (yd), 83
 equivalents, 83, 514
 square yards (yd²), 514

Years, 250

 centuries, 251
 decades, 251
 leap years, 18, 250, 470*, 479*
 months of, 18–19, 250–251

See also Calendars; Time

Z

Zero

 as additive identity, 2
 in decimal addition and subtraction, 199–200, 229
 in division answers, 334–335, 372–374
 in money amounts, writing, 157–158
 on number line, 39–41
 as placeholder, 152
 property of, for multiplication, 120–121
 subtracting across, 189–190
 as whole number, 24